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Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate
gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs
have been confirmed to execute directly or indirectly osmoregulatory functions in fish via
translational control. In order to clarify whether miRNAs play relevant roles in the osmoregu-
lation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three
various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally
11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries,
respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified
using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p
were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were signif-
icantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish
water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were sig-
nificantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea
water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were signifi-
cantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea
water compared with brackish water. The expression patterns of 12 dominantly expressed
miRNAs were analyzed at different time points when the eels transferred from fresh water to
brackish water or to sea water. These miRNAs showed differential expression patterns in
eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated
osmoregulatory effects in certain salinities. In addition, the identification and characteriza-
tion of differentially expressed miRNAs at different salinities can clarify the osmoregulatory
roles of miRNAs, which will shed lights for future studies on osmoregulation in fish.

PLOS ONE | DOI:10.1371/journal.pone.0136383 August 24, 2015 1 / 20

OPEN ACCESS

Citation: Wang X, Yin D, Li P, Yin S, Wang L, Jia Y,
et al. (2015) MicroRNA-Sequence Profiling Reveals
Novel Osmoregulatory MicroRNA Expression
Patterns in Catadromous Eel Anguilla marmorata.
PLoS ONE 10(8): e0136383. doi:10.1371/journal.
pone.0136383

Editor: Hikmet Budak, Sabanci University, TURKEY

Received: April 21, 2015

Accepted: August 3, 2015

Published: August 24, 2015

Copyright: © 2015 Wang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All sequencing reads
were deposited in the Short Read Archive (SRA)
database (http://www.ncbi.nlm.nih.goc/sra/), which
are retrievable under the accession number
(SRP054992).

Funding: This study was supported by the Natural
science of Jiangsu Province (BK20141450), the
National Natural Science Foundation of China
(30770283), Project Foundation of the Academic
Program Development of Jiangsu Higher Education
Institution (PAPD), and the Innovation of Graduate
Student Training Project of Jiangsu Province
(CXLX13-381).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0136383&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.goc/sra/


Introduction
MicroRNAs (miRNAs), a class of small non-coding RNAs with the length of 18–26 nt, can
post-transcriptionally regulate the expression of endogenous genes [1,2]. Due to the imperfect
base pairing with 3’-untranslated region (3’-UTR) of target mRNAs, miRNAs can mediate
translational repression or mRNA degradation [3]. Since the identification of the first miRNA
lin-4 in developmental stages of Caenorhabditis elegans, numerous miRNAs have been subse-
quently identified in animals and plants [4]. Many miRNAs are evolutionarily conserved with
the “seed” sequence, and some miRNAs exhibit tissue-and/or time-specific expression [2]. One
miRNA may regulate hundreds of target mRNAs, whereas one gene may contain multiple
binding sites of miRNAs, thus resulting in a potential and complex regulatory network [5–8].
Functional studies have indicated that miRNAs can participate in the regulation of different
cellular processes [5,9].

Maintaining cell volume and structural dynamics is vital for organisms during cellular life
[10], and is especially crucial for teleost, because maintaining water and ion homeostasis in
their gills is indispensable to osmotic adjustment during migration. Hundreds of cellular events
can be observed during osmotic stress in teleost such as alteration in the activities of cellular
receptors and reorganization of the cellular cytoskeleton architecture [10,11]. The major regu-
lators of osmotic stress appear to be involved in the change of external ion contents or internal
hormonal levels in fish, but it is still unknown which factors or molecules are predominantly
influential to osmoregulatory mechanisms. Several studies have been conducted to explore the
potential factors for osmoregulation. Osmotic stress transcription factor 1 (OSTF1) is an
important molecule for osmoregulation as a putative transcriptional regulator in early hyperos-
motic regulation [12]. OSTF1 was first identified in Oreochromis mossambicus [13]. Subse-
quently, the OSTF1 of Japanese eel Anguilla japonica has been successfully cloned and shared
84% DNA homology with the OSTF1 of tilapia [14]. The number of ion channels or transport-
ers can be regulated by increasing or decreasing the transcription and/or translation of corre-
sponding genes [15], such as Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis trans-
membrane conductance regulator (CFTR). Cl- channels can be up-regulated in fish gill after
sea water acclimation [16]. Recently it has been reported that signalling pathways play an
important role in osmotic stress, such as myosin light chain kinase (MLCK), focal adhesion
kinase (FAK), and mitogen activated protein kinase (MAPK) pathways [17–21]. It is also well
known that the functional evidences of glucocorticoid receptors and calcium sensing receptors
are illustrated in zebrafish by morpholino knockdown technology [22,23]. Moreover, hor-
mones including growth hormone (GH), insulin-like growth factor-1 (IGF-1), thyroid-stimu-
lating hormone (TSH) and prolactin (PRL) play important roles in the osmoregulation of fish
species [24,25]. Although several molecules, pathways and hormones related to osmoregulation
have been reported previously, the miRNAs involved in osmoregulation are still less reported.
For instance, it is highlighted that miR-200a and miR-200b from miR-8 family in zebrafish
embryos reveal an obvious impact on Na+/H+ exchanger; concurrently, an increase in the
osmotic pressure sensitivity can result in Na+ accumulation in ionocytes [26]. In addition, in
vivo trials have demonstrated that down-regulation of miR-429 in tilapia could result in an
substantial increase in OSTF1 expression, which is responsible for osmosensory signal trans-
duction [27]. The loss of miR-30c function can lead to an inability to respond to osmotic stress
that directly regulates hsp70 expression by targeting hsp70 3’-UTR [28]. IGF-1 is also identified
as the target gene of miR-206 in tilapia and IGF-1 treatment can up-regulate the expression of
transporters such as Na+, K+-ATPase, and NKCC [29,30]. Through those studies, some effects
of miRNAs on osmoregulation have been clarified, but a complicated molecular regulatory net-
work remains unclear.
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Anguilla marmorata, one of the quint essential catadromous fish, also known as marbled
eel, is a tropical eel widely spread across tropical and subtropical oceans and associated with
fresh water systems. A. marmorata is also placed in the International Union for Conservation
of Nature (IUCN) Red List of threatened species, and is regarded as species under second-class
protection in China, due to the excessive fishing under the stimulation of its high commercial
value, especially in Asian and Southeast Asian fish markets [31]. During the continental growth
stages, the eels have frequently encountered the osmoadaptation challenge during migrating
reciprocally between fresh water and sea water [32]. The juvenile eels are usually born in the
sea, and then migrate to fresh water for primary growth, following by the return to the sea for
the reproduction during the adult period [33]. Thus, the transition along gradient salinity
throughout life requires the eels to have a well-established osmoregulatory system. Even
though the molecular mechanisms of osmoregulation have been addressed from different
aspects in other close species of the eels, the information on how miRNAs complete osmos-
tress-induced responses through the alternation of osmospecific gene expression in osmoregu-
latory organs such as gills in the marbled eels are still limited. We hypothesize that miRNAs
contribute to differential expression pattern in the body of marbled eels in various salinities.
We aim to identify differentially expressed miRNAs in different salinities, and most impor-
tantly, to reveal the role of miRNAs in osmoregulation in marbled eels. Our data will provide
referential information for future studies on the aquaculture and conservation of marbled eels.

Materials and Methods
Ethics statement
The experiments were conducted on A. marmorata that is regarded as species under second-
class state protection in China. All experiments were performed according to the Guideline for
the Care and Use of Laboratory Animals in China. This study was also approved by the Ethics
Committee of Experimental Animals at Nanjing Normal University. The location is not pri-
vately-owned or protected in anyway. All eels were provided by Hainan Wenchang Jinshan eel
technology limited company which has obtained The People's Republic of China aquatic wild
animal catching permit from Ministry of Agriculture of The People's Republic of China since
2004 (Approval number: National Fishery Resources and Environmental Protection 2004; 13).

Collection of A. marmorata samples
For Illumina sequencing, 52 juvenile individuals of A. marmorata were captured from Wan-
quan River in Hainan Island, China (19°08’17N, 110°15’46E). After acclimatized in our labora-
tory for 1 week, 18 of 52 eels with similar size and weight were exposed to different salinities
for 15 days, including 6 individuals in fresh water (FW, 0‰ salinity), 6 in brackish water (BW,
10‰ salinity) and 6 in sea water (SW, 25‰ salinity). Each individual was dissected on ice and
its gill tissues were immediately frozen in liquid nitrogen and stored at -80°C until RNA isola-
tion. Totally 18 gill tissues were assigned to 3 groups, each has two biological replicates
(assigned as P1 and P2), and each replicate consisted of three different individual gill tissues.

For miRNA time-course expression experiment, twenty-seven juvenile individuals of A.
marmorata were provided by the same company as described above. The experimental eels
were primarily placed in FW (0 h, salinity of 0‰) and the gills tissues were isolated (n = 3),
and then the salinity was gradually increased by 3‰ everyday until it reached up to 10‰ (BW)
or 25‰ (SW). In order to determine the temporal expression of miRNAs in salinity adaptation
groups, gill tissues were collected from three eels in each treated group at 1, 6, 12 and 24 h after
the desired salinity was established (n = 3). During sampling process above, experimental eels
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were anaesthetized with a solution of 0.05% 2-phenoxyethanol (Sigma-Aldrich, St Louis, MO,
USA).

Total RNA of the gill tissues mentioned above were extracted by High Purity RNA Fast
Extract Reagent (Bioteke, Beijing, China) according to the manufacturer’s protocol. The same
reagent was using in subsequent experimental sampling. The quantity of total RNA was mea-
sured by using NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA), and its integ-
rity was examined in 1.0% agarose gel.

sRNA library construction and sRNA deep sequencing
After sRNAs with 15–33 nt in length were isolated from 1 �g total RNA by size fractionation in
a 15% TBE urea polyacrylamide gel, the purified sRNAs were then ligated to 30 adaptors and 50

adaptors (Illumina, San Diego, CA, USA). Briefly, the first strand of cDNA was synthesized
with reverse transcription. Subsequently, the synthesized cDNAs were subjected to 15 PCR
cycles using primers complementary to two adaptors. Following the purification of amplified
cDNAs, the products were sequenced by using Hiseq2500 in Illumina Genome Analyzer (Illu-
mina, San Diego, CA, USA). All sequencing reads were deposited in the Short Read Archive
(SRA) database (http://www.ncbi.nlm.nih.goc/sra/), which are retrievable under the accession
number (SRP054992).

Bioinformatics analysis
After masking the adaptor sequences and removing the reads with excessively small tags or
contaminated adapter-adapter ligation, the clean reads with 15–33 nt in length were processed
for further bioinformatics analysis. Since A. marmorata lacks a reference genome, the remain-
ing reads were mapped to European eel Anguilla Anguilla genome (http://www.zfgenomics.
org/sub/eel), one of A. marmorata closely related species [34], with exact match in the seed
region by using Bowtie software (parameters:–n, 0, -1 and 15) [35]. The reads mapped to the
European eel A. anguilla genome were filtered to discard rRNA, tRNA, snRNA, ncRNA and
other snoRNA sequences by BLAST against the NCBI Genbank database (www.ncbi.nlm.nih.
gov/) and Rfam database (11.0, http://Rfam.sanger.ac.uk/).

The remaining sequences will be identified as conserved miRNAs in A. marmorata if these
sequences exactly matched the conserved miRNAs with miRbase data (version 20.0, http://
www.mirbase.org/) by using bowtie program (parameters:–n, 0, -1 and 15). In order to describe
the nucleotide bias of identified miRNAs in A. marmorata, conserved miRNA indentified in
our sRNA library will be used to count the nucleotide bias at each position.

The sequences will be identified as novel miRNAs in A. marmorata if they mismatched to
conserved miRNAs with miRbase, but shared the same seed region with the conserved miRNA
in miRbase by using miRDeep2 (mapper. pl config_miRDeep; parameters:-e,-d,-h,-i,-j,-l, 18,-
m and-p). RNA-fold program was used to reveal the propensity of miRNA structures with the
default parameters [36].

In order to explore the differential expression of mature miRNAs, the reading counts of
conserved miRNAs in three libraries were used as the strategy to evaluate the relative abun-
dance after normalization, which was conducted by using miRDeep2 quantifier. pl module
(default parameters). In order to reveal the differential expression of pre-miRNAs in three
libraries, the counts of the reads that matched with miRbase-annotated pre-miRNAs but not
matched with mature miRNA in miRbase were used to calculate Fragments per Kilobase of
transcript per million fragments mapped (FPKM). The FPKM expression was computed by
using cufflink program with default parameters, and the FPKM score can response to the
expression of known miRNA hairpins.
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MiRanda program (parameters: S > 90 and �G < �17 kcal/mol) was utilized to clarify the
functions of the identified miRNAs by predicting their target genes [37,38]. Furthermore, Gene
ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were performed to identify the functional modules regulated by miRNAs.

Quantitative real-time PCR
In order to validate and characterize the differentially expressed miRNAs in A. marmorata cul-
tured in different salinities, the relative expression of 12 miRNAs including 8 known and 4
novel miRNAs was selected and analyzed by quantifying the miRNA stem-loop. Total RNAs
were isolated using the same reagents as described above. Reverse transcription was performed
in a 20-�L reaction system consisting of 1 �L of total RNA, 1 �L of enyzme mix, 1 �L of specific
primer, 5 �L of 5× RT buffer and 12 �L of ddH2O using ReverTra Ace qPCR RT Kit
(TOYOBO, Japan). Briefly, after a reverse transcription step at 42°C for 18 minutes and
enzyme inactivation step at 85°C for 5 seconds, the cDNA was synthesized accordingly and the
new synthesized cDNA was stored at -20°C for subsequent quantitative real-time PCR
(qRT-PCR). QRT-PCR was performed on ABI Step One Plus system (Applied Biosystems,
Foster, CA). The qRT-PCR experiments were performed in a 20-�L reaction system consisting
of 2 �L of diluted cDNA template, 10 �L of 2× Realtime PCR Master Mix, 0.4 �L of each primer
(10 mmol/�L) and 7.2 �L of ddH2O using SYBR Green Realtime PCR Master Mix (TOYOBO,
Japan). The PCR amplification was conducted under an initial denaturation at 94°C for 30 sec-
onds, and then 40 cycles of amplification including the denaturation at 94°C for 20 seconds,
annealing at 61°C for 30 seconds, extension at 72°C for 30 seconds; after 40 cycles, final exten-
sion at 72°C for 1 minute. The specific RT primers and stem-loop primers are shown in supple-
mentary data (S1 Table).

In order to explore the osmoregulatory roles of miRNAs, the temporal expression levels of 12
mature miRNAs were further examined. Total RNA was isolated. Subsequently, reverse tran-
scription was performed in a 20-�L reaction system consisting of 1 �L of total RNA, 1 �L of
miRNA RT enyzme mix, 10 �L of 2× TS miRNA Reaction Mix and 8 �L of ddH2O by using
miRNA First-Strand cDNA synthesis Supermix (TransScript, Beijing, China). Briefly, after a
reverse transcription step at 37°C for 1 hour and enzyme inactivation step at 85°C for 5 seconds,
the cDNA was synthesized accordingly and the new synthesized cDNA was stored at -20°C for
subsequent qRT-PCR. QRT- PCR was performed on ABI Step One Plus system (Applied Biosys-
tems, Foster, CA). The qRT-PCR amplification was performed in a 20-�L reaction system con-
sisting of 1 �L of diluted cDNA template, 10 �L of 2× Top Green qPCR superMix, 0.4 �L of each
primer (10 mmol/�L), 0.4 �L of Passive Reference Dye (50×) (optional) and 7.8 �L of ddH2O by
using Green miRNA qRT-PCR SuperMix (TransScript, Beijing, China). The PCR reactions were
performed as follows: 94°C for 30 seconds, and then 40 cycles with 5 seconds at 94°C and 30 sec-
onds at 60°C. The primers are shown in supplementary data (S2 Table).

Each qRT-PCR experiment was performed in triplicate, and each independent experiment
was composed of three biological replicates. Finally, the default melting curve step in ABI Step
One Plus system (Applied Biosystems, Foster, CA) was performed to verify the amplification
specificity. U6 was used as an internal control. The expression of miRNAs was measured by
using the 2-44CT method [39].

Statistical Analysis
The data of qRT-PCR were expressed as Mean ± SD. Statistically significant difference was
examined by a t-test through SPSS 13.0 software. The p value less than 0.05 was considered as
the statistically significant difference.
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Results
Features of sRNAs in A. marmorata cultured in different salinities
In order to identify miRNA differentiation of A. marmorata exposed to three different salini-
ties, three sRNA libraries representing the gills of A. marmorata cultured in FW, BW and SW
were constructed with total RNA and subjected to Illumina sRNA deep sequencing. In total,
8,928,604 and 6,924,130 raw reads were obtained from FWP1 and FWP2, 7,636,838 and
8,570,151 raw reads from BWP1 and BW0P2, 10,336,326 and 7,487,310 raw reads from SWP1
and SWP2, respectively.

After quality control, we obtained 6,289,961 and 5,049,207 clean reads with 15–33 nt from
FWP1 and FWP2, 5,273,102 and 6,685,304 from BWP1 and BWP2, 7,574,411 and 4,994,553
from SWP1 and SWP2, respectively (S3 Table). Among these clean reads, 4,911,979 and
3,832,520 sequences from FWP1 and FWP2, 4,395,015 and 5,508,995 sequences from BWP1
and BWP2, 6,014,642 and 3,906,573 sequences from SWP1 and SWP2 matched perfectly to that
of the European eel A. anguilla genome, with the similarity of 78.09%, 75.90%, 83.34%, 82.40%,
79.41% and 78.22% to the clean reads, respectively. In addition, A. anguilla genome also can be
used to screen sRNAs from mRNA degradation pathways. These results showed excellent
matching degree with exon sense, followed by matching intron sense in our six sRNA libraries.
During the detection of repeat reads (download from RepBase http://www.girinst.org.), there
were 1,785,829, 733,956 and 2,099,259 clean reads matched with repeat sequences in FW, BW
and SW, respectively. The non-miRNAs were disclosed according to Rfam database, followed by
a disposal of 362,703 and 196,749 reads from FWP1 and FWP2, 332,046 and 427,494 reads from
BWP1 and BWP2, 574,914 and 435,468 reads from SWP1 and SWP2 (S4 Table).

The sRNA-sequencing results indicated that 22 nt sRNAs were the most abundant, whose
amounts were up to 16.82%, 24.70%, and 15.55% of the total sRNAs in FW, BW and SW,
respectively. The second most abundant sRNA was 29 nt in SW, but was 23 nt in FW and BW,
and with abundance of 28–30 nt sRNAs in FW and SW was higher than that in BW (Fig 1).

Identification of conserved mature miRNAs in A. marmorata
The Illumina sRNAs deep sequencing approach allows us to determine the relative abundance
of various miRNA by calculating the sequencing frequency. As a result, 34 conserved miRNAs
were found in our sRNA libraries. A highly expressed miRNA may have a large number of
sequenced clones. The miRNAs were considered as eligible for differential expression analysis
when normalized expression (NE) is larger than 1 in all salinities, otherwise clean reads were
ignored. A number of mature miRNAs such as miR-10b-5p, 181a, 26a-5p, 30d, and 99a-5p
exhibited a broad range of expression levels by abundantly expressing more than hundreds of
thousands of sequence reads in all salinities. Among them, miR-10b-5p is the most abundant
miRNA; on the contrary, some miRNAs such as miR-1a-2-5p, miR-727-5p and miR-466k
showed less than 10 reads (S5 Table). The different categories and the expression of miRNAs
often reflect the different roles in a particular tissue or development stage as well as corre-
sponding to biological mechanisms.

Nucleotide bias of conserved mature miRNAs in A. marmorata
Basic compositions of miRNAs are one of the most fundamental features of miRNA sequences,
especially the first nucleotide bias in miRNAs. In the present study, we analyzed the 1st nucleo-
tide bias and each position of mature miRNAs, which matched perfectly to miRbase known
miRNAs in our three libraries. As a result, uridine (U) was the most frequent nucleotide
(mean = 64.65%) as the first nucleotide at the 5’ end in conserved miRNAs of A. marmorata
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(Fig 2 and S6 Table). The phenomenon of nucleotide bias may be correlated with the mecha-
nisms of miRNA actions, such as binding with the targets for gene regulation. Also, the ninth
nucleotide in the 5’ end is highly enriched by U. Therefore, the 5’ and 3’ edges of the seed
region [40,41], known to have a critical role in targeting miRNA to mRNA for translational
inhibition or mRNA cleavage, are flanked by U. The nucleotide bias analysis at each position
has revealed that U and guanine (G) are mainly located at the beginnings and the ends of the
reads (Fig 2).

Identification of conserved pre-miRNAs in A. marmorata
The Illumina sRNA-seqencing approach also allows us to determine the relative abundance of
various pre-miRNAs by calculating the FPKM score. Those pre-miRNAs that have been fully
sequenced for read coverage can be used for relative abundance analysis. As a result, 184
known pre-miRNAs were used for the assessment of miRNA expression analysis (status as OK
in miRdeep2 quantifier.pl with the default parameters). The most abundant pre-miRNA was
mir-205a with FPKM scores of more than one hundred million in all salinities, while miR-92a,
miR-10b, miR-181, miR-92b, miR-26a, miR-99a and miR-454 showed predominant expression
with more than 200,000 FPKM scores (S7 Table).

Identification of novel miRNAs in A. marmorata
During searching of novel miRNAs, the mapped reads excluding known miRNAs were evalu-
ated by miRDeep2 and RNA-fold. As a result, 613 novel miRNAs were predicted with total

Fig 1. Length distribution of sRNA sequences of A. marmorata in three libraries. Sequence length distribution of clean reads based on the abundance;
the most abundant size class was 22 nt in three libraries, followed by 23 nt in FW and BW but 29 nt in SW.

doi:10.1371/journal.pone.0136383.g001
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read counts varying from 263371 to 3; additionally, their miRDeep2 scores were diverged from
854020.6 to 0, and the estimated probability that the miRNA candidate is a true positive is ran-
ged from 97 ± 1% to 57 ± 3%. RNA-fold was implemented to predict potential precursor of
miRNA structure and the p values of 523 of 613 predicted miRNA structures were reported as
the significant (p < 0.05). Notably, 519 of 613 predicted novel miRNAs carried with the same
seed with known miRNAs in miRbase database (S8 Table), indicating that these miRNAs may
be the new members to the known miRNA families.

Differential expression of conserved mature miRNAs in eels cultured in
different salinities
The major objective of the present study is to illustrate the differential expression in A. mar-
morata cultured in different salinities. Based on the deep sequencing results, the relative
expression levels of miRNAs could be calculated. Totally 29 miRNAs were significantly up-reg-
ulated, while 72 miRNAs were significantly down-regulated in eels exposed to BW compared
with the eels exposed to FW. Similarly, 24 miRNAs were significantly up-regulated, while 54
miRNAs were significantly down-regulated in eels exposed to SW compared with the eels
exposed to FW. In addition, 24 miRNAs were significantly up-regulated, while 45 miRNAs
were significantly down-regulated in eels exposed to SW when compared with the eels exposed
to BW (p < 0.05) (Fig 3). The up-regulated miRNAs such as miR-122 and miR-190b showed
5-fold and 4-fold higher expression in SW than that in FW. In contrast, miR-124-3p, the most
down-regulated miRNAs, showed 10-fold higher expression in SW than that in BW, while
miR-1a-3p and miR-206-3p exhibited 2-fold increase. Interestingly, there was no significantly
up-regulation for known mature miRNAs in SW to BW (Fig 4 and S9 Table).

In order to validate the differential expression, 12 mature miRNAs composed of 8 signifi-
cantly differentially expressed mature miRNAs (including 4 known miRNAs: miR-139-5p,
miR-140-3p, miR-19b and miR-122, and 4 novel miRNAs: miR-nov1, nov2, nov3 and nov4)

Fig 2. Nucleotide bias of conserved miRNAs at each position of A. marmorata in three libraries. The most frequent nucleotide in the first nucleotide
and the ninth nucleotide at the 5’ end is U. (A) Nucleotide bias of conserved miRNAs at each position in FW. (B) Nucleotide bias of conserved miRNAs at
each position in BW. (C) Nucleotide bias of conserved miRNAs at each position in SW.

doi:10.1371/journal.pone.0136383.g002

Fig 3. Difference of mature miRNA expression in BW compared with FW, in SW compared with FW and in SW compared with BW. Volcano plot of
miRNA expression levels in BW compared with FW (A), in SW compared with FW (B) and in SW compared with BW (C). Each point represents a miRNA.
Blue points represent significantly differentially expressed miRNAs.

doi:10.1371/journal.pone.0136383.g003
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and 4 similarly expressed mature miRNAs including miR-99a-5p, miR-454, miR-101b-5p and
miR-206-3p were assayed by qRT-PCR (Fig 5). The relative expression of 11 miRNAs was con-
sistent with the Illumina sequencing results, except for a slight difference with miR-206-3p due
to the mismatching by primer-miRNA binding.

Differential expression of conserved pre-miRNAs in eels exposed to
different salinities
The relative expression of known miRNA hairpins was calculated on the basis of their FPKM
scores. Totally 184 conserved pre-miRNAs were found in all salinities, 166 of 184 pre-miRNAs
were co-expressed. As a result, 26 known pre-miRNAs such as miR-122, miR-429, miR-454b,
miR-30e and miR-33a significantly up-regulated (p < 0.001) in eels exposed to BW compared
with those of FW. Similarly, miR-122 and 190b were significantly up-regulated and miR-103
was significantly down-regulated in eels exposed to SW compared with those of FW (p < 0.05).
MiR-21-1 was significantly up-regulated, while miR-203 was significantly down-regulated in eels
exposed to SW compared with the eels exposed to BW (p < 0.001) (S7 Table). Particularly, the
significantly differential expression of 58, 4 and 3 conserved pre-miRNAs were observed in FW

Fig 4. Hierarchical clustering of conserved miRNAs differentially expressed in three different
salinities. The heat map is drawn with log2(NE+1) of each miRNA. Color map is used to distinguish the
difference in the expression of miRNAs.

doi:10.1371/journal.pone.0136383.g004
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Fig 5. Quantitative real-time PCR validation of differentially expressed miRNAs identified using Illumina sRNA deep sequencing. (A) Profile of
sequencing frequencies for miRNAs in different salinities; (B) Profile of relative expression of miRNAs evaluated by qRT-PCR.

doi:10.1371/journal.pone.0136383.g005
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compared with BW, in FW compared with SW and in BW compared with SW, respectively,
while only 2 pre-miRNAs were significantly differential expression in all salinities (Fig 6).

Osmoregulatory expression patterns of miRNAs in eels exposed to
different salinities
All results above showed that the approach using sRNA sequencing is a reliable and effective
method for identifying miRNA expression in A. marmorata cultured in different salinities. In
order to investigate whether miRNAs play the osmoadaptation role in different salinities, the
temporal expression levels of 12 mature miRNAs were further examined using qRT-PCR in
FW (0 h) as the control, and 1, 6, 12 and 24 h after exposed to BW and SW. These 12 miRNAs
including miR-10b-5p, miR-181a, miR-181b, miR-26a-5p, miR-99a-5p and miR-454 were
dominantly expressed, and miR-139-5p, miR-140-3p, miR-19b, miR-122, miR-30d and miR-
92b were significantly differentially expressed.

The results demonstrated differential expression patterns of miRNAs in different time
points when transferred to BW and SW. For instance, the expression of miR-122 and miR-
140-3p was similar, and these 2 miRNAs almost did not reveal any change in their expression
within 24 h after transferred to BW from FW, but the expression was increased in 1 h and 6 h
then decreased in 12 h and increased again in 24 h when transferred to SW from FW. On the
contrary, the expression of miR-10b-5p did not reveal any change within 24 h when transferred
to SW from FW, but reached its peak level in 24 h when transferred to SW from FW. The other
9 miRNAs were differentially expressed in BW compare with FW and in SW compared with
FW (Fig 7). The expression patterns of these 12 miRNAs suggest that the miRNAs may regu-
late the response to osmotic stress variably.

Target prediction and function annotation
The determination of physioregulatory properties of miRNA is elucidated by the prediction of
target genes of significantly differentially expressed miRNAs (p < 0.05) between salinity sets
using miRanda. In total, 773 target genes were found (data not shown). The predicted target

Fig 6. Venn diagram comparing the expression distribution of miRNAs in BW compared with FW, in
SW compared with FW and in SW compared with BW. Numbers in parentheses represent the numbers of
co-expressed or differentially expressed pre-miRNAs.

doi:10.1371/journal.pone.0136383.g006
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genes were further categorized through GO annotation and KEGG pathway analysis. After
analyzing the top 30 most enrichment GO annotation, the most abundant gene counts were
shown in negative regulation of protein phosphatase-type 2B activity (GO:0032513) GO term
in biological process and 2 GO term including muscle tendon junction (GO:0005927) and
nematocyst (GO:0042151) in cellular compartment level. Notably, in molecular function level,
there are 8 GO terms including 3-hydroxyisobutyryl-CoA hydrolase activity (GO:0003860),
homogetisate 1, 2-dioxygenase activity (GO:0004411), protein-arginine deiminase activity
(GO:0004668), 25-hydroxychlecalciferol-24-hydroxylase activity (GO:0008403), 1-alpha-
25-dihydroxyvitamin D3 24 hydroxylase activity (GO:0030342), sulfiredoxin activity
(GO:0032542) and inosine nucleosidase activity (GO:0047724) associated with most abundant
gene counts (Fig 8). Subsequently, the KEGG pathway analysis revealed two major pathways
occupied by the most abundant gene counts of significantly differentially expressed miRNAs
including phosphatidylinositol signaling system (Ko04070) and purine metabolism (Ko00230)
(Fig 9). The crucial deviation in the number of the target gene counts implied that the varied
levels of miRNAs involved in these GO terms and pathways.

Discussion
The marbled eel, A. marmorata, is one of the important economic fish in Southeast Asia,
widely spread across tropical and subtropical oceans and associated with fresh water systems.
In the present study, a comprehensive annotation and analysis of the miRNAs expressed in A.
marmorata exposed to different salinities has been constructed. The analysis for the length dis-
tribution of sequenced sRNAs has been illustrated that the dominant size of sRNAs in all salin-
ities is 22 nt, followed by 23 nt and 21 nt. In addition, the length distribution of 28–30 nt

Fig 7. Expression patterns of miRNAs in the gills at different time points. Expression of miR-181b, miR-26a-5p, miR-181a, miR-454, miR-99a-5p, miR-
30d, miR-92b, miR-122, miR-19b, miR-139-5p, miR-140-3p and miR- 10b-5p were assayed by qRT-PCR. *Significant difference between BW and SW
(p < 0.05).

doi:10.1371/journal.pone.0136383.g007
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Fig 8. Gene ontology (GO) classification annotated for predicted target genes of differentially expressed miRNAs. Partial GO enrichment for the
predicted target genes is shown in biological processes (blue part), cellular compartments (green part) and molecular functions (red part).

doi:10.1371/journal.pone.0136383.g008

Fig 9. Summary of KEGG pathway enrichment for predicted target genes of differentially expressed miRNAs.

doi:10.1371/journal.pone.0136383.g009
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sRNAs in FW and SW is higher than that in BW. This feature is consistent with the fish species
such as blunt snout bream, tilapia, bighead carp, silver carp, Pseudosciaena crocea, Paralichthys
olivaceus and Cynoglossus semilaevis [42–47], but not with other vertebrates such as dairy goat
and swine [48,49]. This phenomenon suggests that the length distribution may be similar in
closely related fish species. Up to now, the data of sRNAs in the gills of fish including A. mar-
morata are still limited, especially the information about sRNAs in different salinities is still
rare. The length distribution in the gills of A. marmorata cultured in different salinities is
urgently needed to be unveiled in the future.

The base compositions of miRNAs can influence their physiochemical and biological prop-
erties through affecting base pairing and the thermodynamic folding of miRNA secondary
structure [48], therefore, a configuration change in the structures of miRNAs can adversely
alter their activities [50–52]. The U, as the most common base at the 5’ end in miRNAs, is sub-
stantiated by several studies [6,53]. In our sRNA libraries, the most frequently nucleotide in the
first nucleotide and the ninth nucleotide at the 5’ end is U. This feature suggests that U is selec-
tively favored at the seed region, which may account for its prominent functions in miRNA
biogenesis and mRNA target recognition.

In all salinities, the most abundant sequenced mature miRNAs are miR-10b-5p, miR-181a,
miR-181b and miR-26a-5p that are expressed more than hundreds and thousands of sequence
reads. MiR-181 family is known for its ability to alter cellular metabolism and to regulate sur-
vival, organism size, and PTEN expression in thymocytes [54]. Similarly, miR-26a has been
identified in the glomeruli as the contributor of renal failure [55], which is also required for the
differentiation and regeneration of skeletal muscle [56]. However, there is no direct evidence
for supporting the involvement in osmoregulation of these miRNAs.

The differentially expressed miRNAs such as miR-122, 190b, 124-3p, 1a-3p and 206-3p
showed a potential role in osmoregulation when they are either significantly up-regulated or
down-regulated in different salinities. As the liver-specific miRNA, miR-122 can regulate lipid
metabolism [57,58], which is an major regulator of cellular energy metabolism [10]. In hepato-
cellular carcinoma, miR-190b is effective in the suppression of IGF-1 [59], and it is reported to
play a critical role in fish osmoregulation [24]. Interestingly, miR-190b is one of the molecular
targets of polyphenols [60], and exhibits a variety of anti-carcinogenic effects on the prevention
of angiogenesis [61]. In vitro luciferase assays, miR-124 can bind to the target sequence located
in the 3’-UTR of the mineralocorticoid receptor (Nr3c2) [62]. These studies in tilapia have
unraveled that its growth is regulated by miR-206 through modulating IGF-1 gene expression;
in contrast, the loss of miR-206 function leads to the accelerated growth [30].

The GO annotation and KEGG pathway analysis was carried out to identify the predicted
target gene of significantly differential expressed miRNAs. Negative regulation of protein phos-
phatase-type 2B activity acted as the most abundant gene count GO term in biological process.
In the previous studies, phosphatase is considered an important indicator of calcium metabo-
lism and osmoregulation in Atlantic salmon [63]; protein phosphatase also can inhibit Na+/H+

exchanger in Pleuronectes americanus and then affect its osmoregulation [64], indicating the
significance of phosphatase regulation in fish osmoregulation. Some evidences have demon-
strated that hydroxylase-related genes specific to steroidogenic interregnal tissue are also
expressed in renal tissues [65,66]. The hydroxylation of vitamin D plays an important role to
maintain fish plasma levels and protein-bound transport in blood plasma [67]. In another
hand, 25-hydroxychlecalciferol-24-hydroxylase activity and 1-alpha-25-dihydroxyvitamin D3
24 hydroxylase activity act as the most abundant target gene count GO term in molecular func-
tion level. Phosphorylation of the transporter acting inhibitory and dephosphorylation leading
to activation/inactivation in fish cells, and phosphatidylinositol-mediated exocytic insertion of
the transporter into the membrane can execute a vital role in fish physiology [68]. All these

MiRNA-Seq Reveals Osmoregulatory MiRNA in Anguilla marmorata

PLOS ONE | DOI:10.1371/journal.pone.0136383 August 24, 2015 15 / 20



results above revealed the potential osmotic regulatory function of the differential expressed
miRNAs in the three libraries.

In order to investigate whether miRNAs play the osmoregulatory roles in different salinities,
temporal expression patterns of 12 miRNAs have been evaluated by qRT-PCR. We have
selected 12 miRNAs for further examination in 9 different time points. Interestingly, miR-122
and 140-3p demonstrated osmoregulatory effects in SW, while miR-10b-5p showed osmoregu-
latory effects in BW. This phenomenon suggests that these three miRNAs may have different
roles in osmotic regulation. Other 9 miRNAs exhibited differential expression, suggesting that
these 9 miRNAs may have potential effects on osmoregulation. Even though there are some
studies regarding to differential expression of miRNAs in response to different osmotic pres-
sure [27,28], the expression of miRNAs in different salinities are rarely reported, especially in
fish.

In the present study, we have demonstrated the differential expression patterns of miRNAs
subjected to various salinities, and pinpointed a variety of miRNAs with respect to fish osmo-
regulation. For future perspective, the subsequent studies for elucidating the possible osmoreg-
ulatory mechanisms of miRNAs have been highlighted in this study.
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