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ABSTRACT

Aims To estimate the impact of existing high-coverage needle and syringe provision (HCNSP, defined as obtaining more
than one sterile needle and syringe per injection reported) and opioid substitution therapy (OST) on hepatitis C virus (HCV)
transmission among people who inject drugs (PWID) in three UK settings and to determine required scale-up of interven-
tions, including HCV treatment, needed to reach theWorld Health Organization (WHO) target of reducing HCV incidence
by 90% by 2030. Design HCV transmission modelling using UK empirical estimates for effect of OST and/or HCNSP on
individual risk of HCVacquisition. Setting and participants Three UK cities with varying chronic HCV prevalence (Bris-
tol 45%, Dundee 26%, Walsall 19%), OST (72–81%) and HCNSP coverage (28–56%).Measurements Relative change
in new HCV infections throughout 2016–30 if current interventions were stopped. Scale-up of HCNSP, OST and HCV
treatment required to achieve theWHO elimination target. Findings Removing HCNSPor OSTwould increase the num-
ber of new HCV infections throughout 2016 to 2030 by 23–64 and 92–483%, respectively. Conversely, scaling-up these
interventions to 80% coverage could achieve a 29 or 49% reduction in Bristol and Walsall, respectively, whereas Dundee
may achieve a 90% decrease in incidence with current levels of intervention because of existing high levels of HCV treat-
ment (47–58 treatments per 1000 PWID). If OST and HCNSP are scaled-up, Walsall and Bristol can achieve the same im-
pact by treating 14 or 40 per 1000 PWID annually, respectively (currently two and nine treatments per 1000 PWID),
while 18 and 43 treatments per 1000 PWID would be required if OST and HCNSP are not scaled-up.

Conclusions Current opioid substitution therapy and high-coverage needle and syringe provision coverage is averting
substantial hepatitis C transmission in the United Kingdom.Maintaining this coveragewhile getting current drug injectors
onto treatment can reduce incidence by 90% by 2030.

Keywords HCV treatment scale-up, hepatitis C virus, mathematical model, needle and syringe provision, opioid
substitution therapy, people who inject drugs.
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INTRODUCTION

Hepatitis C virus (HCV) is a major cause of morbidity
world-wide [1]. Approximately 85% of HCV infections in
the United Kingdom are acquired through injection drug
use [2,3], therefore prevention of HCV transmission among

people who inject drugs (PWID) is crucial for reducing the
HCV disease burden.

Primary prevention interventions for HCV are opioid
substitution therapy (OST) and needle and syringe
programmes (NSP) among PWID [4]. OST and high-
coverage needle and syringe provision (HCNSP, defined as
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obtaining more than one sterile needle and syringe per
injection) can reduce the risk of HCV acquisition by 40–
80% [5–10]. Although low in many settings [11,12], UK
coverage levels for OST (70%) and HCNSP (48%) are high
[2]. Further, the emergence of highly efficacious anti-viral
HCV drugs [13] has raised the possibility of scaling-up HCV
treatment as a prevention strategy among PWID [14,15].
Consequently, theWorldHealthOrganization (WHO) recently
produced a global strategy for eliminating HCV [1].

Modelling has suggested that OST and HCNSP has
reduced HCV prevalence in the United Kingdom, but
further scale-up will have limited impact [16], with HCV
treatment being needed to reduce HCV prevalence mark-
edly [15,17,18]. However, no analyses have considered
how the impact of OST or HCNSP may vary between
regional settings, or what combined scale-ups of HCV treat-
ment with OST and HCNSP are required to achieve the
WHO HCV elimination targets.

In this paper, a HCV transmission model incorporating
improved empirical evidence for the effectiveness of harm
reduction interventions is used to evaluate the impact of
current levels of OST and HCNSP on cumulative numbers
of incident HCV infections in three UK settings (Bristol,
Dundee and Walsall), and the required scale-up of these
interventions with HCV treatment to reach WHO’s targets
of reducing HCV incidence by 90% by 2030 [1].

METHODS

Model description and assumptions

We developed a dynamic deterministic model of HCV
transmission and disease progression among PWID, similar
to other HCV transmission models [16,17] using principles
outlined by recent guidelines for HIV or economic
infectious disease models [19,20]. The model simulates
the movement of current PWID through different stages
of injecting duration, intervention coverage, risk and HCV
infection states, as shown in Fig. 1. Further model details
are in the Supporting information.

Stratifications by injecting duration are included to
incorporate increased injecting cessation andHCVacquisition
risk among people recently initiated into injecting [5,21,22],
with the chosen category in line with reporting from the un-
linked anonymous monitoring (UAM) survey of PWID [23].
PWID are also stratified into different intervention states that
influence HCV transmission risk: no intervention, OST only,
HCNSPonly, or both. PWID enter themodel as recent initiates
with no intervention coverage. They transition through
successive injecting duration categories with rates of injecting
cessationandnon-HCV-relateddeath.Due toa lackofdata,we
assumed that recruitment and leaving rates onto and off OST
and HCNSP were independent of the current intervention
state; previous modelling suggests that this should not affect
our model projections [16]. The model is stratified further by

high and low HCV transmission risk, with a proportion
starting injecting in the high-risk category [24] and PWID
transitioning between these categories. PWID were defined
as high-risk if they had been homeless in the last year and/or
injected crack in the last 4 weeks (low-risk otherwise), which
was associated with increased HCV transmission risk [25].

New initiates into injecting are initially susceptible to
HCV and become infected at a per-capita rate depending
on their intervention state, injecting duration category, risk
category and prevalence of HCV infection in the popula-
tion. Previous analyses suggest that incorporating like-
with-like mixing (individuals with the same risk behaviour
or characteristics being more likely to form injecting con-
tacts with each other than with other individuals) will
have little effect on our model projections [16], with data
suggesting that it only occurs weakly in Bristol [26], and
so random mixing was assumed between all subgroups.

Once infected, some PWID clear infection spontane-
ously [27], with the remainder becoming chronically
infected, which is life-long unless treated. Chronically
infected PWID progress through disease states (Fig. 1c),
with HCV disease-related death occurring from the decom-
pensated cirrhosis, hepatocellular carcinoma, liver trans-
plant and post-liver transplant stages.

HCV treatment is only allowed in the F0–F3 and com-
pensated cirrhosis states, as it was contraindicated for
more severe liver disease for interferon (IFN)-based therapy
[28] and evidence is only now emerging of its benefits
with new direct-acting anti-viral (DAA) therapies [29].
An annual number of PWID are treated, with a proportion
achieving a sustained virological response (SVR-effective
cure) and the remainder returning to their prior infection
category. Following successful treatment, no further dis-
ease progression occurs in the F0–F3 states [30,31], but
continued slower progression occurs among those with
compensated cirrhosis [31,32]. We allow re-infection of
those who have attained SVR and retreatment of those
who fail treatment or become re-infected in line with
current recommendations [13].

Model parameterization

Themodel was parameterized for three UK settings: Bristol,
Dundee and Walsall. These sites were chosen because of
the availability of survey data and to provide a range of
epidemic settings. The model parameters and uncertainty
ranges are given in Table 1 and Supporting information,
Table S1. Effect estimates for how HCV transmission risk
are modified by OST and/or HCNSP, or injecting duration,
were taken from a pooled analysis of UK and Australian
data [25] and a Cochrane systematic review [10]. Esti-
mated leaving rates from the high-risk category (1.16 per
year), OST (1.65 per year) or HCNSP (0.52 per year) came
from two UK studies [24,38].
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Figure 1 Schematics of different model components. (a) Schematic of injecting duration and infection components of model. Susceptible individuals
are free from disease and upon infection move to the chronically infected category. Successfully treated individuals move back into the susceptible
category. Injecting duration is modelled as three categories; recently initiated people who inject drugs (PWID) (denoted recent PWID, < 3 years),
non-recent PWID (≥ 3 and < 10 years) and long-term PWID (≥ 10 years), with PWID transitioning through these categories at rates τi, where
i = 1, 2 for recent and non-recent injectors, respectively. Injectors cease injecting (cessation or death) at rate μi where i = 1, 2, 3 for recent (< 3 years
of injecting), non-recent (≥ 3 years and< 10 years) and long-term injectors (> = 10 years) respectively. (b) Schematic of intervention component of
model. It is assumed the recruitment rates β and η are independent of the current intervention state. OST = opioid substitution therapy;
HCNSP = high coverage needle and syringe provision (defined as at least one clean needle for every injection). (c) Schematic of disease progression
component of the model. Each of the disease states is stratified by injecting duration n, risk category m, OST category i and needle and syringe
provision (NSP) category j. Progression through the disease states occurs at a rate determined by the current disease state, as are the disease related
death rates. Metavir states F0, F1 (mild HCV disease), F2, F3 (moderate HCV disease), compensated cirrhosis (also denoted as metavir state F4),
decompensated cirrhosis, hepatocellular carcinoma (HCC), liver transplant and post-liver transplant. All states have a cessation rate from injecting
and a non-disease related background death rate. Infection can occur between all disease states, but not shown for clarity [Colour figure can be
viewed at wileyonlinelibrary.com]

Achieving HCV elimination targets in the UK 3

© 2018 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction. Addiction

http://wileyonlinelibrary.com


Table 1 Model parameters.

Parameters Symbol Value/range Reference
Epidemiological and demographic
parameters

Number of new injectors per
year

θ Fitted to obtain population sizes Bristol [33,34], Walsall [34] and unpublished estimates,
Dundee [35]. See Table S2 and supporting information

Combined mortality and
injecting cessation rates per
year

μi Fitted to obtain injecting duration
profiles for each setting

Lower bounds of 0.004 and 0.008 chosen to ensure
leaving rate greater than the death rate [36,21]. See
Table S2 and supporting information

Infection rate per year π Fitted to obtain HCV prevalence
for each setting

See Table S2 and supporting information

Proportion of new infections
which spontaneously clear

δ Sampled from uniform
distribution (0.22–0.29)

[27]

Annual leaving rate from high-
to low-risk behaviour

ζ Sampled range (0.6761–1.617) Data from cohort study [24] found 78/145 injectors no
longer homeless after 8 months Transition probability
sampled from beta distribution (α=78, β = 67) and
converted to yearly rate

Annual recruitment rate from
low- to high-risk behaviour

σ Fitted to obtain required high-risk
proportions in each setting

See Table S2 and supporting information

Intervention-related parameters
Annual OST leaving rate γ 1–3 Duration on OST was 8 months (4–12 months) in

cohort of PWID in UK [37]
Annual HCNSP leaving rate κ 0.37–0.77 Welsh cohort study 61% PWID still HCNSP after 1 year,

so estimated duration on HCNSP as 1.3–2.7 years [38]
Annual recruitment rate into
OST

β Fitted to obtain required OST
coverage proportions in each
setting

See Table S2 and supporting information

Annual recruitment rate onto
HCNSP

η Fitted to obtain required high NSP
coverage proportions in each
setting

See Table S2 and supporting information

Proportion of treatments
achieving SVR prior to 2015

α Sampled from uniform
distribution (0.40–0.67)

Weighted mean of pooled intention to treat SVR for
genotypes 1 and 2/3 taken from UK treatment data for
PWID [39]

Proportion of treatments
achieving SVR post-2015

α Sampled from uniform
distribution (0.86–0.92)

[40] Weighted mean of SVR for genotype 1 (90%) and
genotypes 2/3 (82–93%) from [41]

Number of PWID treated per
year

Φ Bristol: 18 (2009 onwards)
Dundee: 34 (2009 to 2015), and
then 40 (2015 onwards)
Walsall: (2009 onwards)

Number of HCV treatments in 2011
Assumed treatment of PWID commenced in 2009 [39].
More recent estimate for Dundee (personal
communication, John Dillon). Walsall assumed same
rate as Bristol

Relative transmission risk parameters
Risk associated with being on
OST only

Γ 0.41 (0.22–0.75) sampled from
log-normal distribution

Odds ratio and 95% CI from pooled analysis [25]

Risk associated with being on
HCNSP only

Π 0.59 (0.36–0.96) sampled from
log-normal distribution

Odds ratio and 95% CI from pooled analysis [25]

Risk associated with being on
both OST and HCNSP

Γ × Π 0.26 (0.09–0.64) Calculated as product of risk associated with being solely
on OST or NSP. Compares well to estimate from
systematic review 0.29 (0.13–0.65) [25]

Risk associated with being a
recent injector compared to a
long-term injector

Χ1 1.53 (0.93–2.52) sampled from
Lognormal distribution

Odds ratio from pooled analysis [25]

Risk associated with being in
the high-risk category

Ξ Scotland: 2.13 (1.40–3.24)
Bristol and Walsall: 2.75 (1.97–
4.22). Both sampled from log-
normal distribution

Odds ratio from pooled analysis [25]. For Scotland, the
OR is just for homelessness, because there is little crack
injection, whereas it is for crack injection or
homelessness for Bristol and Walsall

OST = opioid substitution therapy; HCNSP= high coverage needle syringe provision; SVR = sustained virological response, high-risk defined as crack injecting
in last 4 weeks or homeless in the last year; HCV = hepatitis C virus; PWID = people who inject drugs; CI = confidence interval.
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HCV treatment was initiated in 2009 at rates deter-
mined by local data, except for Walsall, where Bristol treat-
ment rates were used. Before 2015, UK-specific PWID SVR
rates [39] for pegylated IFN (pegIFN) and ribavirin (RBV)
were assumed, whereas post-2015 a weighted average of
SVRs for genotypes 1 and 2/3 [40,41] for direct-acting
anti-viral drugs was assumed.

HCV disease progression rates were calculated from two
meta-analyses [28,42] (Supporting information, Table S1).
Non-HCV related death rates were derived from two UK
studies [21,36].

Model calibration and uncertainty

The model was calibrated to temporal data on HCV preva-
lence, recent estimates of coverage of OST and HCNSP,
proportion of PWID with high-risk attributes, population-
size estimates of PWID and their distribution by injecting
duration (Table 2 and Supporting information, Table S2)
[23,26,33–35,43,46–49]. Data on HCV incidence for
Dundee and Bristol and HCV prevalence after 2006 for
Bristol and Walsall were used for model validation, with
both extracted from routine surveys of PWID [needle
exchange surveillance initiative in Scotland (NESI) [43],
unlinked anonymousmonitoring survey (UAM) in England
and Wales [23] and two additional community surveys
using respondent-driven sampling from Bristol [26]; see
Supporting information for details of the surveys].

A sequential Bayesianmethod was used to calibrate the
model, each to have 1000 model fits. First, a demographic
submodel was fitted to data on the population size of PWID
for each setting and their distribution by injecting duration,
which was assumed to be stable in Dundee [43], but
decreasing [33,34,46,50] and ageing [26,47–49,51] in
Bristol and Walsall. Secondly, an intervention submodel
was fitted to changing trends in the coverage of OST and

HCNSP from each setting [26,43,47,51], with OST cover-
age increasing in each setting during recent years from
40 to 70–81%, and the proportion with HCNSP remaining
stable in Bristol (ranging between 38 and 82%) and Wal-
sall (ranging between 21 and 42%), but increasing in Dun-
dee (up to 34–79%, see Supporting information, Table S2).
Thirdly, a high-/low-risk submodel was fitted to setting-
specific data on the trends in crack injecting and/or home-
lessness [43,51], which has remained stable in Dundee
(33% high-risk) andWalsall (52% high-risk), but increased
in Bristol during recent years (88% high-risk in 2014).

Lastly, the full model was calibrated to HCV prevalence
data from each setting. For each of the 1000 combined
parameter sets from the previous calibration steps, the
model’s infection rate was calibrated to an initial sampled
prevalence estimate for each city (Bristol 2004, Walsall
2006 and Dundee 2008; Supporting information, Table
S2 and Fig. S1), assuming a stable epidemic at that time.
For Walsall and Bristol, this infection rate captured the
subsequent epidemic dynamics accurately (Supporting
information, Fig. S1), whereas for Dundee a second infec-
tion rate [median = 2.0-fold (95% credibility interval
(95% CrI) = 1.8–2.7-fold greater than initial infection rate]
was used to capture the HCV prevalence in 2014. Table S2
summarizes the model parameters obtained through
model-fitting, and the Supporting information includes fur-
ther details.

Model analyses

The model estimated the impact of current coverage levels
of OST, HCNSP and HCV treatment from 2016 to 2030 by
comparing the baselinemodel with a counterfactual where
the effect of these interventions was removed from 2016.
Impact was assessed in terms of the relative change in
the cumulative number of incident infections from 2016

Table 2 Summary of baseline characteristics of people who inject drugs for each setting (minimum-maximum values).

Baseline characteristics
(2014 unless stated)

Setting

Bristol Dundee Walsall

Chronic HCV prevalence 26% (19–32%)b 19% (11–26%)a

HCV incidence 10.0 per 100 py, 95% CI
9.7–14.0 [26] in 2009

14.3 per 100 py, 95%
CI 4.9–25.9 [43]

Not available

Population size (2011) 2025–2564 [44] 675–825 [35] 1296–1623 unpublished estimates
Proportion high risk 80–95%a 26–42%b 50–65%a

Proportion on OST 81% (77–86%)[26] 72% (65–79%)b 72% (61–82%)a

Proportion with HCNSP 56% (38–82%)a [33] 48% (34–79%)b 28% (21–42%)a

Treatments per year 18 [39] 40 (from 2015) (personal
communication, John Dillon)

2 (assumed similar rate per infected
PWID as Bristol)

aData extracted from unlinked anonymous monitoring survey [45]; bdata extracted from Needle Exchange Surveillance Initiative [43]. OST = opioid substi-
tution therapy, HCNSP = high coverage needle syringe provision, high-risk defined as crack injecting in last 4 weeks or homeless in the last year; CI = confi-
dence interval; py = person-years.
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to 2030. Results were obtained for each parameter set and
given in terms of 95% CrI (see Supporting information for
details).

We then estimated the impact to 2030 of scaling-up
both OST and HCNSP to 80% coverage. This maximum
coverage was based partially on the fact that 85% of PWID
inject opioids [51], and so would derive a benefit from OST,
and that higher intervention coverage levels are probably
unsustainable [16]. Additionally, the HCNSP target of
80% coverage is a current target of needle and syringe pro-
viders (personal communication, Rachel Ayres). Following
this, we estimated what additional HCV treatment scale-up
is needed to reduce HCV incidence by 90% by 2030. We
also considered how these projections were modified if
the heightened transmission risks associated with our
high-risk categories were halved.

Uncertainty analysis

A linear regression analysis of covariance (ANCOVA) [52]
was undertaken to determine which parameter uncer-
tainties (exposure variables in the linear regression analy-
sis) contributed most to variability in the percentage
reduction in incident HCV infections over 15 years due to
current levels of HCNSP or OST (outcome variable). The
proportion of each model outcome’s sum-of-squares con-
tributed by each parameter was calculated to estimate
the importance of individual parameters to the overall
uncertainty.

RESULTS

Baseline epidemic projections

The chronic HCV prevalence pre-2016 was projected to be
stable in all three settings (Fig. 2). From 2016 to 2030,
HCV prevalence will decrease slightly in Bristol (by 5%)
and Walsall (by 0.4%), but reduce markedly in Dundee
(by 99%). These decreases are due to the current scale-up
of new treatments from 2015, with heightened impact in
Dundee due to treatment already being scaled-up (47–58
per 1000 PWID). The projected HCV incidence in 2014
varied between settings. The highest incidencewas in Dun-
dee [7.7 per 100 person-year (py), 95% CrI = 4.0–12.6]
and Bristol (6.9 per 100 py, 95% CrI = 3.9–11.5), both
lower but comparable to recent empirical estimates from
these settings [Dundee: 14.3 per 100 py, 95% confidence
interval (CI) = 4.9–25.9 [43] and Bristol: 10.0 per
100 py, 95% CI = 9.7–14.0 [26]]. Incidence was 3.4 per
100 py in Walsall (95% CrI = 1.7–6.6), corresponding
to the low prevalence in that setting. Incidence is expected
to decrease slightly inWalsall (by 1%) and Bristol (by 11%)
during 2016–2030, butwill decrease bymore than 90% in
Dundee (99.97%, 95% CrI = 99.0–99.99).

Impact of existing interventions

Figures 2 and 3 (and Supporting information, Table S3)
show that, regardless of setting, removing HCNSP and/or
OST would lead to a large increase in the number of inci-
dent infections and increased HCV prevalence and inci-
dence by 2030. Removing OST has greater impact than
removing HCNSP (92–483% increase in infections com-
pared with 23–64% respectively), with less impact being
achieved from removing HCV treatment. This differential
impact is due both to the differing coverage of these inter-
ventions and their relative effectiveness. For example, in
Walsall the number of incident infections from 2016 to
2030 would increase by 23, 129 or 176% if HCNSP, OST
or both interventions were removed, respectively, compared
with 3% if HCV treatment were removed. In Dundee, a
greater increase (380%) would result from removing treat-
ment because of the higher treatment rate in that setting.

Impact of combined OST/NSP interventions and treatment
scale-up on HCV incidence

Through scaling-up HCNSP and OST to 80% coverage
from the current levels, it is possible to reduce HCV inci-
dence by 29% (95% CrI = 4.7–58%) in Bristol, 100%
(95% CrI = 99–100%) in Dundee and 49% (95%
CrI = 1.2–77%) in Walsall by 2030 compared to 2015
levels (Supporting information, Fig. S2). Greater impact
is achieved in Dundee due to recent HCV treatment
scale-up. In all settings, most impact (> 80%) is
achieved from scaling-up HCNSP due to its lower base-
line coverage (28–56%, depending on setting).

With current levels of HCNSP and OST, the annual
number of HCV treatments needed to reduce incidence
by 90% by 2030 (WHO elimination target) is 43 (95%
CrI = 26–61), 29 (95% CrI = 14–45) and 18 (95%
CrI = 8–36) per 1000 PWID for Bristol, Dundee and
Walsall, respectively (Fig. 4), which translates to 7.5–
13.2% of infected PWID in the first year (see supporting
information Figure S3). This would require considerable
scale-up of treatment in Bristol (fivefold from nine annual
treatments per 1000 PWID) and Walsall (ninefold from
two annual treatments per 1000 PWID), while treatment
numbers could be reduced by 45% (95% CrI = 11–63%)
in Dundee and still achieve this target.

Concurrent scale-up of HCNSP and OST to 80% cover-
age decreases the yearly treatments required to reach the
WHO target (Fig. 4); from 43 to 40 per 1000 PWID for
Bristol, 29 to 22 for Dundee and 18 to 14 for Walsall. If,
additionally, the transmission risk associated with high-risk
injecting (homelessness and crack injecting) was also
halved, then the required number of treatments would
reduce further by one-fifth (19–22%; see Fig. 4) in each
setting. In all scenarios, fewer treatments are always
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needed in Dundee than the current number of treatments
(47–58 per 1000 PWID).

Uncertainty analysis

Analyses of covariance (Supporting information, Fig. S4)
suggest thatmost of the variability in the effect of removing

HCNSP on increasing the number of infections between
2016 and 2030 is due to uncertainty in the efficacy of
HCNSP (accounting for 41, 4 and 49% of variability in
Bristol, Dundee and Walsall, respectively), the coverage
of HCNSP in 2014 (32% of variation in Bristol, 39% in
Walsall and < 1% in Dundee) and HCV prevalence in
2014 (77% in Dundee, 0.1% in Bristol, 3% in Walsall).

Figure 2 Impact of each intervention scenario on hep-
atitis C virus (HCV) incidence and prevalence in Bristol (a,
b), Walsall (c,d) and Dundee (e,f). Thick solid line is me-
dian baseline scenario, with shaded region the 95% cred-
ible intervals. The black points with thin whiskers are the
data points [with 95% credible interval (CrI)] that were
not fitted to, whereas the black points with thick whiskers
are the data points used for model calibration. (a,b) Bristol
incidence and prevalence. (c,d) Dundee incidence and
prevalence. (e,f) Walsall incidence and prevalence

Achieving HCV elimination targets in the UK 7
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Increasing effectiveness and coverage of HCNSP increases
the impact of removing the intervention (Bristol and
Walsall) and in Dundee the lower the 2014 HCV preva-
lence the greater the increase in infections (Supporting in-
formation, Fig. S5). All other parameters and inputs had
little effect. For the impact of removing OST (Supporting
information, Fig. S6), most variability is due to uncertainty
in the efficacy of OST (45% in Bristol, 44% in Dundee and
38% in Walsall).

DISCUSSION

Main findings

Current levels of HCNSP and OST in the United Kingdom
are averting considerable HCV transmission, with their re-
moval likely to double the number of new HCV infections
occurring during the next 15 years. If HCNSP and OST
levels are maintained, only moderate rates of HCV treat-
ment (18–43 per 1000 PWID annually) are needed to re-
duce HCV incidence by 90% by 2030, therefore achieving
theWHO elimination target. This scale-up has already been
achieved in Dundee. Although scaling-up HCNSP and OST
further (to 80% coverage) will reduce these treatment
targets (by a fifth), their existing moderate coverage in the
United Kingdom limits the additional impact they can have.

Strengths and limitations

Our detailed modelling of three contrasting settings
provides insights into how the impact of existing interven-
tions varies throughout the United Kingdom, with our

projections being strengthened by using detailed local data
and utilizing new synthesized estimates for the efficacy of
OST and HCNSP. Additionally, calibrating our model to
temporal trends in injecting duration and PWID popula-
tion size allowed us to incorporate possible changes in
injecting over recent years, increasing the potential realism
of our model projections.

However, limitations exist, relating primarily to the
data used to inform our model. First, despite synthesiz-
ing the best available international evidence [10],
there remains substantial uncertainty in the intervention
effectiveness of HCNSP, which our uncertainty analyses
show was the most important contributor to uncertainty
in our model projections. Further data collection of
individual injecting frequency, real-life syringe provi-
sion and blood-borne virus status could improve these
estimates.

Secondly, self-reported data on NSP coverage derived
from surveys recruiting from needle and syringe providers
are likely to overestimate coverage in the population as a
whole [43,45], so instead we estimated the HCNSP cover-
age in each city as the ratio of the number of syringes
distributed to the estimated total number of injections
undertaken by PWID in that city. Unfortunately, this
measure utilized three uncertain pieces of information
(PWID population size, yearly injecting frequency and the
number of new needles distributed), with the resulting
uncertainty in HCNSP coverage contributing considerably
to the variability in our projections. Less biased estimates of
syringe coverage could only come from better monitoring
of service users.

Figure 3 Relative increase in new hepatitis C virus (HCV) in-
fections (2016–30) resulting from removing existing coverage
levels of needle and syringe provision (NSP), opioid substitution
therapy (OST), both NSP and OST, HCV treatment of people
who inject drugs (PWID) or all interventions in each city. The
box-plots signify the uncertainty (middle line is the median, the
limits of the box are 25and 75% percentiles and the whiskers
2.5 and 97.5% percentiles)

Figure 4 Required annual number of hepatitis C virus (HCV)
treatments per 1000 PWID needed to reduce incidence by
90%, with or without high coverage needle syringe provision
(HCNSP) and opioid substitution therapy (OST) scaling up to
80% coverage. The box-plots signify the uncertainty in the model
projections (middle line is the median, the limits of the box are
25 and 75% percentiles and the whiskers 2.5 and 97.5% percen-
tiles). The dashed boxes show the uncertainty range in the cur-
rent treatment rate per 1000 PWID in each setting
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Thirdly, our use of homelessness or crack use as a
marker of high transmission risk is incomplete, because it
does not explicitly incorporate differences in injecting risk.
This was conducted because of the inherent difficulty in
using data on specific injecting behaviours to estimate reli-
ably the variability in transmission risk between different
PWID, and sowe used proxymarkers that have been found
to be related to increased transmission risk. Importantly,
previous analyses [15,16] suggest that risk heterogeneity
rarely plays an important role in determining the impact
of HCV interventions, so this simplification should not have
affected our projections.

Fourthly, we assumed that all PWID were eligible for
OST, despite a growing proportion (3.9% in 2004 and
12% in 2014) injecting non-opioids [2], for which OST
is not an appropriate treatment. Although this was
accounted for partially by assuming that the coverage of
OST could not be greater than 80%, future analyses could
improve upon this bymodelling non-opioid injecting PWID
explicitly as a separate group, where HCNSP would be
the only harm reduction strategy available. This could
mean that existing interventions would have less preven-
tion benefit.

Fifthly, we assumed that HCV treatment was not
allowed for individualswith severe liver disease (decompen-
sated cirrhosis and beyond), despite recent treatment
guidelines allowing it [13]. This assumption is unlikely to
affect our impact projections, because fewer than 7% of
all chronically infected PWID have this level of liver disease.

Lastly, we assumed thatWalsall had the same low treat-
ment rate among PWID as Bristol, due to lack of data. This
will have had little impact on our results. which show that
treatment needs to be scaled-up substantially to have a
large impact on HCV incidence. In contrast, current treat-
ment numbers in Dundee are very high (25% of infected
per year from 2015), with our modelling suggesting that
they will achieve HCV elimination by 2030 if maintained
at this high level. To determine if this may have affected
our impact projections for OST and HCNSP, we undertook
a scenario analysis (not shown) which halved treatment
rates from 2016 and showed similar impacts for the same
levels of HCNSP and OST coverage.

Comparison with other studies

Few model analyses have estimated the impact of HCNSP
or OSTon HCV transmission, with previous analyses either
not using empirical intervention effect estimates [53]
and/or not using detailed context-specific data to evaluate
how impactmay vary across settings [16,17]. This analysis
is consistent with previous findings that HCNSP and
OST can have substantial impact [16], with our analysis
also highlighting how impact can vary depending on local
levels of intervention coverage and epidemic trends.

Additionally, our analysis is the first to estimate the re-
quired scale-up of OST, HCNSP and HCV treatment needed
to achieve WHO’s HCV-elimination targets among PWID
in a European setting, with previous analyses either con-
sidering their required scale-up in a rural U. setting [54],
or just the treatment scale-up requirements in Australia
[55]. Without scale-up of OST and HCNSP, our analyses
suggest that similar treatment rates (43/1000 PWID
annually) are needed in Bristol as for Australia (59 of
1000 PWID annually), which has a similar chronic preva-
lence of HCV, but much lower than in the rural US setting
(89 of 1000 PWID annually) due to the increasing HCV
epidemic occurring there. However, further scale-up of
OST and HCNSP results in lower treatment rates being
needed in the United Kingdom (14–44 of 1000 PWID
annually) than in Australia, although the reduction is
smaller (20% decrease in treatment requirements) than
for the rural US (halves treatment requirements) due to
the negligible current coverage of these interventions in
the US setting.

CONCLUSIONS AND IMPLICATIONS

Our projections highlight the considerable impact that
existing harm reduction interventions are having in high
coverage settings, such as Europe and Australia, emphasiz-
ing the need to maintain current coverage levels of these
interventions, avoid reductions in prevention funding or
changes in drug treatment policy away from harm reduc-
tion towards abstinence. There is also an urgent imperative
to continue funding for NSPs, as changes in drug use
favouring non-opioid use may reduce the impact of OST.

Our projections suggest that benefits could be achieved
from scaling-up OST and HCNSP further, especially in
lower coverage settings such as Walsall. This highlights
the need to initiate strategies for increasing the coverage
of OST and HCNSP in these and similar settings, which
should be conducted in close consultation with service
users. Evidence shows the benefits of extending opening
hours [56] and promotion of secondary distribution via
peers [57,58] or vending machines for increasing coverage
[59]. Additionally, better monitoring at the local district
level is needed to identify lower coverage settings.

Although our analyses emphasized the importance of
OST and HCNSP for reducing HCV transmission, a com-
bined approach utilizing HCV treatment is needed to re-
duce HCV incidence to low levels, as advocated by WHO.
This scale-up will require policy-driven expansion of case-
finding interventions in settings such as drug treatment
centres and NSPs, as already undertaken in Dundee,
emphasizing their crucial role for any scaled-up HCV
prevention response. Strategies also need to be developed
to reduce the harms associated with structural factors,
such as homelessness and incarceration, which modelling
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suggests could be heightening HCV transmission among
PWID [25,60,61]. Such a multi-pronged approach must
be prioritized to achieve the HCV-elimination targets set
by WHO [1].
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treated in the first year of treatment scale up to reduce in-
cidence by 90% by 2030, with or without high coverage
needle syringe provision (HCNSP) and opioid substitution
therapy (OST) scaling up to 80% coverage. The box-plots
signify the uncertainty in the model projections (middle
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