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 48	

Abstract: 49	

The osmolarities of various bodily fluids, including tears, saliva and urine, have been used as 50	

indices of plasma osmolality, a measure of body hydration, while tear osmolarity is used 51	

routinely in dry eye diagnosis, the degree of tear hyperosmolarity providing an index of 52	

disease severity. Systemic dehydration, due to inadequate water intake or excessive water 53	

loss is common in the elderly population, has a high morbidity and may cause loss of life. Its 54	

diagnosis is often overlooked and there is a need to develop a simple, bedside test to detect 55	

dehydration in this population. We hypothesize that, in the absence of tear evaporation and 56	

with continued secretion, mixing and drainage of tears, tear osmolarity falls to a basal level 57	

that is closer to that of the plasma than that of a tear sample taken in open eye conditions. We 58	

term this value the Basal Tear Osmolarity (BTO) and propose that it may be measured in tear 59	

samples immediately after a period of evaporative suppression. This value will be particular 60	

to an individual and since plasma osmolarity is controlled within narrow limits, it is predicted 61	

that it will be stable and have a small variance. It is proposed that the BTO, measured 62	

immediately after a defined period of eye closure, can provide a new metric in the diagnosis 63	

of systemic dehydration and a yardstick against which to gauge the severity of dry eye 64	

disease.  65	

 66	

 67	

 68	

 69	
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 82	

1. INTRODUCTION 83	

 84	

In this paper we hypothesize that in the healthy eye, tear osmolarity measured after a period 85	

of evaporative suppression, represents a basal level of osmolarity close to that of the plasma. 86	

It is proposed that such a metric can provide a valuable measure of body hydration and a 87	

baseline against which to gauge the severity of dry eye disease (DED).  88	

 89	

The aqueous tears occupy the conjunctival sac when the eyes are closed and are redistributed 90	

between the fornical and preocular compartments when the eyes open (Gaffney et al., 2010). 91	

The preocular compartment splits into two during the upstroke of the blink to form the 92	

preocular tear film and the tear menisci, and these are surfaced anteriorly by the tear film 93	

lipid layer, which retards evaporation (McDonald and Brubaker, 1971; Peng et al., 2014; 94	

Cerretani and Radke, 2014). Once formed, the tear film remains ‘perched’ throughout the 95	

blink interval (Miller, Polse and Radke, 2002) while the menisci provide a conduit for the 96	

drainage of tears into the nasolacrimal system (Doane, 1981). The tear film is further divided 97	

into the precorneal and prebulbar films. 98	

 99	

The aqueous tears derive chiefly as an active secretion of the lacrimal gland (Mircheff, 1989; 100	

Turpie et al., 2009; Dartt 2004, 2009; Hodges and Dartt, 2016; Stevenson, Pugazhendhi, and 101	

Wang 2016), and to a lesser extent from, the conjunctival epithelium, including the goblet 102	

cells (Shiue et al., 2000; Dartt, 2002; Li et al., 2001; Dartt, 2009) and the corneal epithelium 103	

(Klyce and Crosson 1985). The size of these additional contributions is not established in 104	

humans but in the rabbit it has been calculated that the conjunctival fluid could account for 105	

the volume of the basal tear secretion (Shiue et al., 2000; Li et al., 2001). Cerretani and 106	

Radke, in their model of human tear dynamics concluded that the contribution of 107	

osmotically-induced water flow to the total tear supply, through the conjunctiva and cornea, 108	

was in the region of 10% (Cerretani and Radke, 2014). In patients who have undergone 109	

daryoadenectomy (removal of the main and palpebral parts of the lacrimal gland) in the 110	

treatment of epiphora (Taiara and Smith, 1973; Hornblass, Guberina, and Herschorn, 1988) 111	

or lacrimal gland neoplasia (Rose and Wright, 1992), a proportion of patients fail to develop 112	

dry eye and may show no reduction in the Schirmer response, implying an adequate supply of 113	

tear fluid from some source other than the main and palpebral lacrimal gland (Stevenson 114	

Pugazhendhi and Wang, 2016). This source could include the accessory lacrimal glands and 115	
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the conjunctival and corneal epithelia but such reports do permit the relative contribution of 116	

these sites to residual tear secretion to be determined. The accessory glands account for about 117	

a tenth of the total lacrimal mass (Allansmith et al., 1976). Thus they do not shed light on the 118	

normal contribution of the ocular surface epithelia to tear production and this fraction 119	

remains unknown in humans. The lacrimal component increases substantially during 120	

emotional tearing and in the reflex response to intense light or a corneal foreign body 121	

(Murube, 2009; Dartt, 2002; Nelson and Wright, 1986). 122	

 123	

2. LACRIMAL SECRETION 124	

 125	

The acinar cells of the lacrimal gland represent about 80% of the glandular mass while the 126	

duct cells represent 10-12% (Dartt, 2002). The lacrimal secretion, derived from the lacrimal 127	

acini, is modified as it passes through the lacrimal ducts and its composition differs from that 128	

of the lacrimal fluid that is delivered into the conjunctival sac. Regulated secretion of the 129	

major acinar proteins, lysozyme, lactoferrin, lipocalin, and peroxidase, involves exocytosis, a 130	

rapid process involving the fusion of acinar apical membranes with those of the apical 131	

secretory vesicles, occurring in response to an appropriate stimulus. The duct epithelium 132	

modifies the primary lacrimal secretion by the addition of water and electrolytes, particularly 133	

of K+ and Cl- ions (Dartt, Moller, and Poulsen, 1981; Mircheff, 1989; Ubels et al., 1994; 134	

Dartt, 2009; Katona et al., 2014). In the rabbit, it has been estimated that the duct cells secrete 135	

about 30% of the lacrimal fluid (Katona et al., 2014) but the figure for human lacrimal fluid 136	

is not known. 137	

 138	

The lacrimal, conjunctival and corneal fluids are mixed and distributed by blinking (Gaffney 139	

et al., 2010) and to a lesser extent by eye movements (Yokoi,  Bron and Georgiev, 2014) and 140	

it is this composite fluid that is termed the tears and is assayed in meniscus samples.  141	

 142	

3. TEAR OSMOLARITY / TEAR OSMOLALITY 143	

 144	

The osmolarity of a solution is the number of osmoles per litre of solvent, usually expressed 145	

as milliosmoles. The osmolality of a solution is the number of osmoles per kilogram of 146	

solution. In the literature related to systemic disease and plasma, osmolality is the preferred 147	

term while in the tear literature the term osmolarity is more often used. Where an estimate for 148	

serum is made from the concentration of selected serum constituents, the value is usually 149	
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expressed as osmolarity. Clinically the numerical difference between the two terms may be 150	

small and but the formula selected to make the calculation is of importance (Hooper, 2015a). 151	

Here we use either term, according to its literature source.  152	

 153	

For the tears, based on a meta-analysis of several studies using depression of freezing point, 154	

or vapour pressure measurement, tear osmolarity (tOsm) has been reported to be 302 ± 9.7 155	

mOsm/L in normal adults (Tomlinson et al., 2006). Similar values were reported by Sullivan 156	

et al. (Sullivan et al., 2010) -  302.2 ± 8.3 (n = 75), Jacobi et al. (Jacobi et al., 2011) - 301 157	

mOsm/L (n=95), Keech et al. (Keech et al., 2013) - 301.2 ± 7.2 mOsm/L (n=15), Eldridge,	et	158	

al	(Eldridge et al., 2010) - 301.8±10.5 mOsms/L  and by Li et al. (Li et al., 2012) - 159	

298.0±14.2 mOsms/L, based on smaller subsets. In all these studies, tear osmolarity values 160	

were obtained using the TearLab® device, which depends on the measurement of electrical 161	

impedance and therefore the presence of charged particles in solution and therefore, in the 162	

tears, mainly ions and to a much lesser extent, proteins. The presence of urea and of glucose 163	

in the tears is not registered by this device. 164	

 165	

Tear hyperosmolarity is the central mechanism of dry eye acting in part directly on epithelial 166	

cells (Kam et al., 2016) and in part by generating downstream inflammatory events at the 167	

ocular surface (Bron et al., 2017). Tear film break-up in the blink interval amplifies tear 168	

hyperosmolarity and additionally, degrades optical performance when tear instability and 169	

breakup intrude upon the visual axis (Chao et al., 2016).  170	

 171	

When the eyes are open, the osmolarity of the tears is modified by evaporation, to an extent 172	

that depends on ambient humidity (Madden, Tomlinson and Simmons, 2013; Lee et al., 173	

1999), air temperature (Abusharha Pearce and Fagehi, 2015) and airflow (Peng et al., 2014), 174	

the size of the palpebral aperture and the length of the blink interval, which determines the 175	

period of evaporation (Tsubota and Nakamori, 1995; Tsubota, 1998). Tear osmolarity is 176	

increased by a low relative humidity (RH), high wind speed, raised air temperature, a wide 177	

palpebral aperture and an extended blink interval (Chao et al., 2016). It is generally stated 178	

that the lacrimal fluid is secreted as an iso-osmotic, or slightly hypo-osmotic fluid (Terry and 179	

Hill 1978; Gilbard and Farris, 1979; Niimi et al., 2013) compared with plasma. Tears 180	
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sampled from the menisci are considered to have a higher level of osmolarity than that of 181	

secreted tears, (Mishima and Maurice, 1961; Mishima, 1965; Niimi et al., 2013; Cerretani 182	

and Radke, 2014) and that of the tear film, the latter due to the differential effect of 183	

evaporation on these two compartments during the blink interval (Gaffney et al., 2010). The 184	

ionic composition of the tears is determined by the secretory process (Dartt, 2009; Mircheff, 185	

1989; Katona et al., 2014) and it has been noted that the relative proportions of electrolytes 186	

measured in tear fluid and plasma differ (van Haeringen, 1981). Thus, while the 187	

concentrations of Na+ and HCO3- in human tears are close to those of the plasma (Krogh 188	

Lund and Pedersen-Bjergaard, 1945; Hind and Goyan, 1949; Thaysen and Thorn, 1954; 189	

Yoshimura and Hosokawa, 1963), those of K+and Cl- are higher in the tears (Rismondo et al., 190	

1989), and there is evidence in the rabbit (Mircheff, 1989; Ubels et al.,1994) and rat (Ubels et 191	

al., 2006) that K+ and Cl- ions are added to the lacrimal fluid by the epithelial cells of the 192	

lacrimal duct. In a carefully designed study in rabbits, reported by Yoshimura and Hosokawa 193	

(Yoshimura and Hosokawa, 1963) in which tear osmolarity was measured by freezing point 194	

depression, tear osmolarity was 17mOsm/L higher in the tears than in plasma (329 in tears 195	

versus 312 mOsm/L in plasma) due to the higher K+ and Cl-  ion concentrations in the tears. 196	

In other reports, also in the rabbit, lacrimal fluid osmolarity was reported to be inversely 197	

proportional to flow rate, with hyperosmolarity encountered at low secretory rates (Bothelo 198	

and Martinez, 1973; Gilbard and Dartt, 1982). Botelho and Martinez postulated that at low 199	

flow rates, water might be reabsorbed in the ducts, distal to the acini. If this situation applies 200	

to human tears then it cannot be excluded that human lacrimal fluid too, is slightly 201	

hyperosmolar with respect to plasma. 202	

 203	

3.1. Diurnal Variation of Tear Osmolarity 204	

 205	
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Various researchers have reported a diurnal variation of tOsm, with the tears found to be 206	

hypo-osmotic on waking (Terry and Hill, 1978; Niimi et al., 2013). Niimi et al. (Niimi, et al., 207	

2013) used a TearLab® apparatus modified to register lower levels of osmolarity, to study 208	

the relationship between diurnal variations of tear osmolarity, central corneal thickness and 209	

corneal deswelling over the day. The TearLab® device measures tear osmolarity on the basis 210	

of electrical impedance and has the advantage that measurement is made directly on the 211	

sampled fluid, without risk of evaporative loss. The authors recorded osmolarity at bedtime 212	

(base-line), upon waking after 6-8.5 hours sleep and at intervals after waking. Tears on 213	

waking were found to be significantly hypo-osmotic (264 ± 14 mOsms/L) compared with the 214	

pre-sleep, baseline values of 297 ± 15 mOsms/L and those encountered later in the day. Tear 215	

osmolarity rose quickly in the first 10 minutes after waking, reaching baseline levels within 216	

the first 40 minutes (P = 0.085). These authors attributed the hypo-osmolarity of tears on 217	

waking to the suppression of evaporation by lid closure and possibly to reflex tearing 218	

occurring on eye opening. Also, their subjects were instructed to blink 3 times and to squeeze 219	

their eyes shut to release fresh tears prior to tear collection, and this may have influenced the 220	

outcome. Given that the level of osmolarity reported fell below that normally cited for plasma 221	

osmolarity, (i.e. 285-295 mOm/kg (Matz, 1996; Stookey, 2005; Cheuvront et al., 2010) reflex 222	

tearing at the time of sampling may have contributed to the low value, but does not explain it.   223	

 224	

In conditions of high tear flow, such as with reflex tearing, tOsm falls from that recorded in 225	

unstimulated, open eye conditions. In a study of six subjects with normal eyes, exposed to the 226	

beam of the slit lamp for five seconds, to induce reflex tearing, tOsm measured by a 227	

depression of freezing point method, fell from 303.2 ±7.2 mOsm/kg (range 287-312 228	

mOsm/kg), to 289.5 ±6.8mos/kg (range 275-298 mos/kg), a 5% decrease, which was 229	

statistically significant (p<.001) (Nelson and Wright, 1986). 230	

 231	

4. DRY EYE DISEASE 232	

 233	

Dry eye disease is a symptomatic eye disorder in which drying of the exposed ocular surface 234	

by evaporative water loss, results in tear hyperosmolarity. This damages the ocular surface, 235	

either directly or by a chain of events causing inflammatory ocular surface damage. (Bron et 236	

al., 2017) There are two major subtypes. In aqueous-deficient dry eye (ADDE), tear 237	

hyperosmolarity is due to evaporation from a reduced tear flow, caused by a reduction in 238	

lacrimal secretion. In evaporative dry eye (EDE), tear hyperosmolarity arises from an 239	
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excessive evaporative loss, caused by a failure of the barrier function of the tear film lipid 240	

layer and	amplified	by	tear	film	break	up. Tear hyperosmolarity has been proposed as the 241	

best single diagnostic test of dry eye (Korb, 2000). In a multicentre study the most sensitive 242	

threshold distinguishing normal from mild/moderate dry eye disease was 308 mOsm/L and 243	

the most specific cut off was 315 mOsm/L (Lemp et al., 2011). In terms of tear osmolarity, 244	

severity is compared with values in subjects with normal eyes. The hypothesis that we 245	

present below gives the opportunity to use a tOsm value obtained in the same individual, 246	

rather than derived from a normal, control population.    247	

 248	

5. BODY HYDRATION and DEHYDRATION 249	

 250	

Total body water (TBW) makes up about 50%–60% of the body mass, with about two thirds 251	

being intracellular, predominantly in lean tissue, and the remainder extracellular (Danziger 252	

and Zeidel, 2015). Blood contributes about 8% to the TBW (Rikkert, 1998; Bossingham, et 253	

al., 2005). Water is lost from the body as insensible perspiration and sweat and in respiratory 254	

vapour, urine and faeces and is replaced by fluid intake and by water contained in foodstuffs. 255	

At sea level, the amount of water lost as respiratory vapour is balanced by metabolic water 256	

production (Cheuvront et al., 2014).  257	

 258	

Regulation of water balance is fundamental to survival and is achieved by a combination of 259	

water conservation (renal) and acquisition (thirst). Water conservation results from the action 260	

of arginine vasopressin (AVP or antidiuretic hormone) on renal water absorption (Baron, 261	

2015). AVP is synthesised in the supraoptic and paraventricular nuclei of the hypothalamus 262	

and delivered to the posterior pituitary, from which it is released (Bourque, 2008) in response 263	

to signals from hypothalamic osmoreceptors (eg.TRPV1) (Ciura, 2006; Leng, 1982). These,  264	

acting as membrane stretch-receptors, signal changes in cell volume (Liedtke, 2000) in 265	

response to changes in plasma osmolality (pOsm). A rise in pOsm creates an osmotic 266	

gradient through which the effects of water loss are shared between the intracellular fluid 267	

(ICF) and extracellular fluid (ECF) compartments (Cheuvront  and Kenefick, 2014). An 268	

increase in neuronal firing stimulates the release of AVP from the posterior pituitary, 269	

resulting in renal water reabsorption, urinary concentration and water conservation       270	

(Cheuvront et al., 2013). A rise is pOsm also stimulates an increase in water intake in 271	

response to thirst (Egan, et al., 2003) which is independent of the action of AVP and results 272	

from direct neural signaling (Denton, et al., 1999; Bourque, 2008). Peripheral osmoreceptors, 273	
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eg. in the gut, also play a role (Bourque, 2008). 274	

 275	

The osmoreceptor neurons in the hypothalamus are believed to encode an osmotic set-point 276	

(Bourque, 2008) that keeps pOsm from deviating by more than 1-2% in an individual 277	

(Bourque, 2008; Cheuvront and Kenefick, 2014).  The pOsm set point for AVP release is 278	

lower than that which stimulates thirst by 10 mmol/kg or more (Cheuvront, et al., 2013). 279	

 280	

In this way, in normally hydrated subjects, hydration is maintained within narrow limits. 281	

(Danziger and Zeidel, 2015). For plasma, this is between 285-295 mOsm/kg. (Matz, 1996; 282	

Stookey, 2005; Cheuvront, 2010). Thomas et al. cite a broader range for serum osmolality of 283	

275 to < 295 mOsmol/kg, (Thomas et al., 2008) but < 2% of free-living people have a pOsm 284	

<285 mOsmol/kg when they consume ≥ 3.0 L fluid per day (Stookey, 2005). 285	

 286	

Clinical dehydration has been defined as a loss of body water, with or without salt, at a rate 287	

greater than the body can replace it (Thomas et al., 2008).  This article is concerned with the 288	

water-loss dehydration, which is accompanied by intracellular dehydration, plasma 289	

hyperosmolarity and, usually, plasma hypernatraemia. It is also termed hypohydration, 290	

hyperosmotic hypovolaemia and dehydration with minimal salt loss (Cheuvront and 291	

Kenefick, 2014). Water-loss dehydration may also be due to hyperglycaemia, in which case it 292	

is accompanied by hyponatraemia. Extracellular dehydration, caused by a loss of iso-osmotic 293	

body fluids, as in secretory diarrhea, involves a reduction in ECF water and will not be 294	

discussed here. (Cheuvront and Kenefick, 2014),  295	

 296	

Plasma or serum osmolality, measured directly, or estimated from the chemical composition 297	

of these fluids (Hooper, 2015a; 2016) has long been used as a clinical index of body 298	

hydration (Armstrong, 2007; Cheuvront et al., 2010; Baron et al., 2015) serving as the gold 299	

standard against which other less invasive methods are compared in the diagnosis of 300	

dehydration. Clinical or ‘current’ dehydration is defined by a plasma osmolality of  > 300 301	

mOsm/kg and preclinical, or ‘impending’ dehydration by a plasma osmolality of > 295 and ≤ 302	

300 mOsm/kg. Impending dehydration can be managed by a planned adjustment of an 303	

individual’s daily fluid intake, whereas current dehydration demands urgent water 304	

replacement to prevent life-threatening complications. Loss of body mass ≥3%, signifying 305	

loss of TBW, recorded over a period of 7 days, is also used as a reference standard in the 306	

detection of dehydration, (Hooper et al., 2016). 307	
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 308	

The frequency of current dehydration in the elderly population is high, with impending 309	

dehydration reported as 40% in those aged 70-90 years, in the US NHANES III cohort, with 310	

a further 28% exhibiting current dehydration (referred to in this report as, ‘overt 311	

hypertonicity’ ,  ≥ 300mmol/L) (Stookey, 2005). Consequently, dehydration, contributing to 312	

the risk of chronic diseases such as urolithiasis, hypertension and coronary heart disease, 313	

(Xiao, Barber, and Campbell, 2004), is a leading cause of hospitalization and death in the 314	

elderly. (Manz and Wentz, 2005; Oei et al., 2016) A number of factors contribute to this. 315	

Older people have a smaller body fluid reserve than younger people, due to reduced muscle 316	

volume (Rickert et al.,1997; Martin et al., 1994) and lose more intracellular water and less 317	

interstitial fluid in response to heat and exercise (Morgan, et al., 2002). Food intake and the 318	

number of episodes of drinking decrease with age (Gaspar, 1999) and the elderly fail to drink 319	

adequate amounts of fluid in response to dehydration (Rolls and Phillips, 1990) in part due to 320	

a decreased sense of thirst (de Castro, 1992). The urinary concentrating ability of the kidney 321	

also declines with age (Davies et al., 1995; Lindeman et al., 1985; Morely, 2000; Sands, 322	

2012; Hooper et al., 2016) and, additionally, an increased use of diuretics or laxatives in older 323	

people contributes to greater fluid loss (Mentes, 2006). Other, cognitive and physical factors, 324	

reduce fluid intake (Lindeman et al., 2000; Zizza et al., 2009) and drinking may be restricted 325	

deliberately as a measure to control incontinence (Hooper et al., 2016; He et al., 2015). Those 326	

with dementia may forget to drink, as daily routines are lost and social contacts diminish 327	

(Hooper et.al., 2016).  328	

 329	

The risk of dehydration is increased in elderly patients in long-term care. Hooper et al. 330	

(Hooper et al., 2016) reported a frequency of 20% in a population of care home residents 331	

(n=188) with a mean age 86 years, with renal, cognitive and diabetic status consistently 332	

associated with the risk of dehydration. Wolff et al. (Wolff et al., 2015) in another UK study, 333	

basing the diagnosis of dehydration on the presence of hypernatraemia on admission to 334	

hospital (plasma Na > 145 mmol/L), found a 5-fold increase in the occurrence of dehydration 335	

in patients admitted to hospital from care homes (adjusted odds ratio [AOR]: 5.32, 95% CI: 336	

3.85-7.37), compared to that in patients admitted from home, and roughly a two-fold greater 337	

risk of in-hospital death (AOR: 1.97, 95% CI: 1.59-2.45) (Wolff et al., 2015). 338	

 339	

This background emphasizes the need to detect dehydration in the elderly, both in the wider 340	

community and in individuals in care (Hydration for Health Initiative, 2012). Dehydration is 341	
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less likely to be overlooked in the hospital population, where serum osmolarity can be readily 342	

calculated from blood samples.   While it is generally agreed that the estimation of plasma 343	

osmolality or serum osmolarity, provide the best single assessment of body hydration 344	

(Hooper et al., 2016; Thomas et al., 2008) such tests are not routinely performed in the 345	

community or in primary or residential care settings (Leibovitz, 2007). Assessment by health 346	

or social care workers is more likely to be based on the demonstration of reduced thirst, sense 347	

of a dry mouth, furrowing of the tongue, loss of skin turgor, a dry axilla, slow capillary 348	

refilling after compression of the nailbed, and increase in urine colour, which appear to be 349	

poor indicators of dehydration in older adults (Hooper et al., 2016). More formal 350	

measurements, of urinary specific gravity, or of salivary or urinary osmolarity, or 351	

bioimpedance have also been used. In a systematic review of tests validated to detect current 352	

water-loss dehydration in older people, Hooper et al (Hooper et al., 2015b) found that only 353	

three stand-alone tests showed any ability to diagnose water-loss dehydration, as indicated by 354	

a serum osmolality ≥ 295 mOsm/kg, with a sensitivity ≥ 0.60 and specificity ≥ 0.75. These 355	

were, missing drinks between meals, expressing fatigue and, in some reports, bioimpedance 356	

(BIA) at 50 kHz. No tests were clearly useful in diagnosing current water-loss dehydration 357	

(serum osmolality > 300 mOsm/kg).  358	

This report (Hooper et al., 2015b) and that of the earlier, US Panel on Dietary Reference 359	

Intakes, (Panel on Dietary Reference Intakes, 2004) emphasize the need to develop a valid, 360	

simple and non-invasive screening test of dehydration in the community, to enable the 361	

identification and management of water loss dehydration in older adults.  362	

 363	

5.1. Body Hydration and Tear Osmolarity. 364	

 365	

Although lacrimal secretion is influenced by vascular filtration pressure (Botelho et al., 1976) 366	

it is the active, energy-requiring, secretory process that determines the final composition of 367	

the tears and hence its osmolarity (Dartt Moller and Poulsen, 1981; Mircheff, 1989). Tear 368	

osmolarity is also influenced by plasma osmolarity and the extent to which this occurs in 369	

humans has been demonstrated by Walsh and colleagues (Fortes et al., 2011; Walsh Fortes, 370	

and Esmaeelpour 2011; Walsh et al., 2012) who reported a positive relationship between 371	

whole body hydration measured as pOsm, and tOsm, in subjects exposed to systemic 372	

dehydration (Fortes et al., 2011). In a study conducted in an environmental chamber, a group 373	

of young adults in their 20s, was exposed to systemic dehydration, equivalent to 2 to 3% loss 374	

of body mass, generated by a combination of water-deprivation and a period of physical 375	
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exercise. Tear osmolarity followed pOsm closely during the evolution of dehydration and, 376	

like pOsm, was restored to normal during rehydration. In this study, the pre-exercise pOsm 377	

was 288 ± 5 mOsm/kg. In two trials, the mean tOsm correlated strongly with mean pOsm at 378	

each time point (r = 0.93, P < 0.001), suggesting that tOsm could serve as a minimally 379	

invasive surrogate for body hydration. Fortes et al. reported a sensitivity of 80 % and 380	

specificity of 92% using tOsm to detect systemic dehydration (Fortes et al., 2011). In a 381	

subsequent study, the authors reported that pOsm may be raised in patients with dry eye 382	

disease with the implication that the raised tOsm could be a consequence of body dehydration 383	

(Walsh Fortes and Esmaeelpour, 2011). In a subsequent letter they expressed the view that 384	

this could lead to a misdiagnosis of dry eye in patients who suffered from systemic 385	

dehydration, (Walsh et al., 2012) but Tomlinson et al. (Tomlinson Madden and Pearce, 2011) 386	

in response, pointed out that the persistent presence of a tear hyperosmolarity within the 387	

range consistent with the diagnosis of DED, in conjunction with supportive clinical features, 388	

would imply the actual presence of DED. Importantly, as noted by Walsh et al. (Walsh Fortes 389	

and Esmaeelpour, 2011), since the risk of both dry eye (Uchino et al., 2006; Moss Klein and 390	

Klein, 2008; Guo et al., 2010) and systemic dehydration (Cheuvront and Kenefick, 2014), 391	

increases with age, the value of a raised tOsm in the diagnosis of systemic dehydration is the 392	

elderly will be reduced (Walsh Fortes and Esmaeelpour, 2011; Walsh et al., 2012; Tomlinson 393	

Madden and Pearce, 2011).  394	

 395	

It is evident that the occurrence of tear hyperosmolarity due to DED is a potential source of 396	

false positives when using tear osmolarity to diagnose systemic dehydration, when based on 397	

the results of random, open eye tear samples. However, if, as we propose below, the tOsm 398	

measurement were to be made after a period of evaporative suppression, this difficulty would 399	

be overcome and a realistic estimate of both body hydration status and of dry eye severity 400	

could be achieved 401	

6. HYPOTHESIS 402	

 403	

6.1 Basal Tear Osmolarity as a Metric in Dry Eye Diagnosis and in the Estimation of 404	

Body Hydration 405	

 406	

As noted, tear hyperosmolarity is the central mechanism in dry eye disease. At present, for 407	

diagnostic purposes, when a patient is suspected of having dry eyes, their tear osmolarity, 408	

derived from a meniscus sample, is compared with population norms obtained from subjects 409	
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over a wide age range. It would be more valuable if a comparison could be made with that 410	

individual’s own tear osmolarity obtained before the onset of dry eye. It is our contention that 411	

this value can be obtained in any subject, regardless of the presence or absence of dry eye, 412	

simply by subjecting the subject to a period of evaporative suppression prior to tear sampling.  413	

 414	

We hypothesize that, in the absence of tear evaporation, with continued lacrimal and 415	

conjunctival secretion and adequate tear mixing and drainage, the osmolarity of the tears, 416	

equilibrating with the interstitial fluid across the ocular surface epithelia, will fall to a basal 417	

levels close to that of the plasma. We consider that this basal value will serve both as a 418	

measure of body hydration and as a stable baseline against which to compare the tear 419	

hyperosmolarity in dry eye. Tear evaporation is readily prevented by eye closure and we 420	

postulate that eye closure for a suitable length of time will drive down tear osmolarity to this 421	

basal level, regardless of the osmolar starting point in open eye conditions and therefore 422	

regardless of the presence of dry eye. This new metric, which we term the Basal Tear 423	

Osmolarity (BTO) will be particular to an individual and is predicted to have a smaller 424	

variance than tear meniscus values measured in non-standardised, open eye, conditions and to 425	

be relatively uninfluenced by ambient environmental conditions. It is proposed as a potential 426	

tool in the diagnosis of systemic dehydration and as a yardstick against which to gauge the 427	

severity of dry eye disease. 428	

 429	

We propose here that the BTO can obtained by measuring tear osmolarity after a period of 430	

eye closure or exposure of the subject to a humid environment in open eye conditions. These 431	

approaches are described briefly here:  432	

 433	

7. MEASUREMENT OF TEAR OSMOLARITY AFTER EYE CLOSURE 434	

 435	

In order to explore the effect of lid closure on tear osmolarity it is necessary to estimate the 436	

likely period of lid closure required to drive down tear osmolarity to a stable, BTO value. 437	

Certain considerations need to be addressed. The hypothesis assumes that with the eyes 438	

closed for a suitable period of time, the body of tear fluid contained within the conjunctival 439	

sac will be completely replaced by lacrimal fluid, supplemented by a smaller amount of fluid 440	

of conjunctival origin and less still of corneal origin. The completeness of this process will 441	

depend on tear turnover, mixing and drainage. In the absence of blinking, a deficiency of tear 442	

mixing during eye closure might be overcome to a limited extent by performing periodic eye 443	
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movements.  In patients with ADDE, lacrimal secretion and turnover is, by definition, 444	

reduced and it would be predicted that in such individuals, the reduction in tear turnover 445	

might increase the time required to drive down tOsm to the BTO value. However, the longer 446	

the period of eye closure, the greater the opportunity, for tear fluid in the conjunctival sac to 447	

equilibrate with the plasma across the conjunctival epithelium and extracellular space. This 448	

equilibration can be predicted to be faster in dry eye disease, since epithelial permeability is 449	

increased (Yokoi et al., 1997). 450	

 451	

7.1. Estimating the Necessary Period of Eye Closure 452	

 453	

On eyelid closure, the elevated tear osmolarity inherited from the open eye will be reduced 454	

by cessation of evaporation, by tear turnover and by equilibration across the conjunctival 455	

epithelium. The time scale of the former is readily estimated. If the total tear turnover rate is 456	

16% per minute, (Tomlinson Doane and McFadyen, 2009) then the flush-out time is 457	

approximately 100/16 min = 6.25 min.  458	

 459	

Across the surface epithelium, the osmolarity of the tears would lie somewhere between that 460	

of the lacrimal fluid and the epithelial fluids. Here, we make a rough estimate of the time 461	

taken for the osmolarity of the lacrimal fluid to approximate to that of the conjunctival fluid, 462	

considering equilibration across the vascular conjunctiva alone, since the surface area of the 463	

human conjunctiva is an order of magnitude greater than that of the cornea (Watsky Jablonski 464	

and Edelhauser, 1988).  465	

 466	

Some idea of the equilibration rate can be approximated from the short circuit current across 467	

the epithelium. Using rabbit data, based on the unilateral removal of chloride from either side 468	

of a rabbit conjunctival preparation, the change in the short circuit current is on the scale of 469	

3µAcm-2 (Kompella Kim and Lee, 1993). This can be converted into an equilibration rate 470	

across the conjunctiva, first dividing by Faraday’s constant, F, to rewrite the short circuit 471	

current in terms of ionic flux. Multiplying by conjunctival surface area (human: Ac=18cm2) 472	

(Watsky Jablonski and Edelhauser 1988) converts this flux into a rate of change of total 473	

amount of ion. Dividing by tear volume (V=7µl) (Tomlinson Doane and McFadyen, 2009), 474	

gives the rate of change of concentration. Finally, dividing by a representative, initial 475	

concentration difference of chloride across the epithelium in these experiments, taking the 476	

value to be around c*=100 mM/l this entails an equilibration rate of 477	
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  478	

   k = 3µAcm-2 . Ac/[FVc*] = 1.2e-3s-1 .  479	

 480	

The associated equilibration timescale is given by 1/k ≈ 830s ≈14mins. One must accept the 481	

caveat that this is a rough approximation.  482	

 483	

In summary, the timescales of the system are such that there will be a relatively rapid wash 484	

out of the combined fluids over about 6-7 minutes in the normal eye. If lacrimal fluid 485	

hyperosmolarity were to be present, a further equilibration across the conjunctival epithelium 486	

will be active on a timescale of, very roughly, 14 minutes. The period of 45 minutes of eye 487	

closure adopted in the experiments described below, should therefore be adequate to achieve 488	

equilibration. Given its limited surface area, the impact of the less permeable cornea is 489	

anticipated to be sub-dominant. These estimates would be modified by variations in tear flow 490	

rate and the increase in epithelial permeability encountered in dry eye disease. For 491	

comparison, Zhu and Chauhan in a model simulation to determine the impact of moisture 492	

chambers on dry eye sufferers, explored the effect of raising the evaporation rate to four 493	

times the normal rate and then reducing it back to normal (Zhu and Chauhan, 2007). On the 494	

basis of this they predicted a restoration of tear osmolarity to baseline values in about 13 495	

minutes.   496	

 497	

 498	

7.2. Measurement of Tear Osmolarity in Open Eye Conditions in High Ambient 499	

Humidity  500	

 501	

Exposure of a subject whose eyes are open, to an ambient RH of 100% will also result in a 502	

complete suppression of tear evaporation and offers an alternative approach to the estimation 503	

of the BTO. Although the value obtained with either approach should be similar there is a 504	

practical value in adopting lid closure for clinical purposes, since it does not require a 505	

controlled environment chamber or goggles constructed to create a humid environment.  506	

 507	

However, exposure to a humid environment offers experimental advantages in tracking the 508	

downward path of tear osmolarity over time, since meniscus sampling can be conducted at 509	

any point throughout the exposure period. Similarly, this open eye approach offers the 510	

opportunity to study osmolar recovery on transfer to a non-humid environment. In the study 511	
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of Niimi et al. (Niimi et al., 2013) tOsm rose quickly over the first 10 minutes after waking, 512	

reaching baseline levels within the first 40 minutes. In high humidity studies it is likely that 513	

the fall in osmolarity towards the BTO will be faster than in closed eye conditions, because 514	

mixing and drainage will be facilitated by spontaneous blinking, whereas in the closed eye 515	

state, mixing will be more restricted.  516	

 517	

8. PILOTING THE EFFECTS OF EYE CLOSURE AND EXPOSURE TO HIGH 518	

HUMIDITY ON TEAR OSMOLARITY 519	

 520	

We have performed a preliminary study to estimate the BTO in eight normal subjects and 521	

eight dry eye patients, after periods of evaporative suppression achieved by either eye closure 522	

or exposure to high relative humidity (Willshire et al., 2017). In the eye closure studies, 523	

closure was maintained for a period of 45 minutes, and eye movements were performed from 524	

time to time to achieve some degree of tear mixing.  In a separate study, subjects were 525	

exposed to an atmosphere of 70% RH and tOsm was measured in both eyes, every 15 526	

minutes, for a period 45 minutes.  Studies were preceded by measurement of tOsm outside 527	

the controlled environment chamber (CEC), in uncontrolled, clinic conditions, to provide 528	

baseline values. Tear osmolarity was significantly reduced after eye closure, in the right and 529	

left eyes analysed independently, in both normal subjects and dry eye patients, to levels in	530	

the	range	accepted	for	plasma	osmolality,	i.e.	between	285-295	mOsm/L.	The	average	531	

tOsm	measured	in	the	left	eye	of		8	normal	subjects,	prior	to	eye	closure,	was	293.1	±	532	

5.54	mOsm/L	and	was	285.9	±	5.54	mOsm/L	(p=	0.006)	immediately	after	eye	opening.	533	

Corresponding	values	in	8	patients	with	mild	DED,	were	302.3	±	12.4	mOsm/L	in	the	534	

clinic,	falling	to	286.1	±	6.60	mOsm/L	following	eye	closure	(p=	0.01)	(Figure	1).		535	

Similar	results,	also	statistically	significant,	were	demonstrated	in	the	right	eye	536	

(Willshire	et	al.,	2017).	When these subjects were exposed to 70% RH, which was not 537	

expected to suppress evaporation completely, a significant fall in tOsm occurred in one eye 538	

only in the normal group, but not in the dry eye group.  539	

 540	

9. PREDICTED UTILITY OF THE BTO IN ESTIMATING BODY HYDRATION 541	

 542	

Our hypothesis predicts that total evaporative suppression will drive down tear osmolarity to 543	

the BTO in both normal subjects and in patients with DED. The BTO value obtained will be 544	
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dependent on that individual’s hydration state and as noted, would be expected to be confined 545	

within narrow limits, reflecting the tight control of plasma osmolarity. This gets over the 546	

difficulty that a raised tOsm measured in open eye conditions cannot distinguish the effect of 547	

suboptimal body hydration from that of DED (Walsh Fortes and Esmaeelpour 2011; Walsh et 548	

al., 2012) and eliminate concerns that environmental factors such as desiccation, sun, wind or 549	

rain and behavioural factors such as outdoor exercise, (causing movement convection), that 550	

might act as measurement confounders, limiting the application of this approach within 551	

sports, wilderness and military medicine (Sollanek et al., 2012; Cheuvront and Kenefick, 552	

2014). 553	

 554	

In normal subjects the difference between the BTO, measured as proposed here and a random 555	

meniscus reading measured in clinic conditions, may be predicted to be small, however, in 556	

DED, the difference should rise progressively with increasing disease severity. We propose 557	

that this differential will provide a better index of dry eye severity in an individual patient 558	

than would be afforded by a comparison with a control population.  559	

 560	

10. SUMMARY AND CONCLUSIONS 561	

 562	

The BTO is proposed here as a new metric for the diagnosis of systemic dehydration and as a 563	

yardstick against which to gauge the severity of dry eye disease. This could meet the need 564	

expressed by several authors for a technology that is simple, rapid and non-invasive 565	

(Armstrong, 2005; Institute of Medicine, 2005; Sollanek, et al., 2012; Ungaro et al., 2015; 566	

Holland et al., 2017). Such a metric could be of utility in several ways. 567	

 568	

1. It is anticipated that the BTO will provide a better diagnostic surrogate for whole body 569	

(plasma) hydration than tear osmolarity measured under non-standardised ambient 570	

conditions. As a minimally invasive, point-of-care diagnostic test that can be deployed at the 571	

bedside, it may be of value in the diagnosis of dehydration in the elderly. However, if it 572	

transpires from future studies, that the BTO can be acquired after a short period of eye 573	

closure, say 15 minutes or less, regardless of the starting level of tOsm, then the utility of the 574	

test will be greatly enhanced and it may be of value in other situations where individuals are 575	

exposed to excessive water loss or deprivation, as in sports and the military environment. 576	

Ungaro et al. (2015) compared mean tOsm (averaged between right and left eyes) with pOsm 577	

in a group of male athletes, before and after exercise tasks conducted on a stationary cycle 578	
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ergometer. These were carried out under controlled environmental conditions, with or 579	

without water restriction leading to up to 3% of body mass loss, and also after rehydration. 580	

They found that tOsm tracked group changes in hydration status similarly to pOsm but that 581	

individual responses of tOsm were less predictable. They concluded that tOsm is a valid 582	

indicator of hydration status at the group level, but that large differences among subjects in 583	

the response of tOsm to changes in hydration status limited its validity at the individual level 584	

(Ungaro et al., 2015). A similar conclusion was drawn in another study conducted under field 585	

conditions involving a self-paced 10 km run, in which participants were exposed to varied 586	

conditions of temperature, humidity and wind speed (Holland et al., 2017). In that study, 587	

although significant reductions in body mass and increases in plasma osmolality, tear 588	

osmolarity and urine specific gravity were observed, the pre- to post-exercise change in tear 589	

osmolarity was not significantly correlated with plasma osmolality, relative body mass loss, 590	

or urine osmolality or specific gravity. It may be surmised that exclusion of environmental 591	

exposure, as proposed for a closed-eye BTO test, might have revealed a correlation between 592	

tOsm and pOsm in such studies. Importantly, since sampling is performed immediately after 593	

a period of eye closure, it will not be influenced by ambient environment or the presence of 594	

dry eye disease; the tOsm will be driven down to the BTO level in any individual. The time 595	

taken to achieve the BTO value in a closed eye test will be important in determining its 596	

practicality, particularly under field conditions.    597	

 598	

2. It is proposed that measurement of the BTO will be of value in assessing the severity of 599	

dry eye, since it will indicate how far tear osmolarity has risen above the basal level in that 600	

individual. The set point of pOsm about which pOsm oscillates during the maintainance of 601	

osmolar hydration differs between individuals and the threshold and slope (sensitivity) of the 602	

AVP response to pOsm change, is under genetic control (Zerbe et al., 1999; Cheuvront et al., 603	

2013). Also, in treating patients with dry eye and trying to restore a normal tear osmolarity, 604	

the BTO will provide an appropriate reference point against which to judge successful 605	

treatment. Experimentally, the approach also offers the opportunity to explore the time taken 606	

for tear osmolarity to return to DED levels on eye opening, in defined ambient conditions. 607	

This has some bearing on the recuperative value afforded by eye closure during sleep and 608	

may differ between the main subtypes of DED. 609	

 610	

3. While the difference between the BTO and the level of tear hypermolarity are conceived to 611	

be a measure of dry eye severity, it also indicates the fold increase in tear osmolarity due to 612	
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evaporative water loss and therefore how much of the increased concentration of a given 613	

solute reflects the concentrating effect of evaporation and how much is due to increased 614	

expression of that molecule. It is important to know this, since the level of tear lacrimal 615	

protein falls in ADDE but is predicted not to do so in EDE, where lacrimal function is normal 616	

(Bron et al., 2009).  617	

 618	

4. The role of tear evaporation in causing DED has long been recognized (Lemp, 1995; 619	

DEWS 2007; DEWS II - Bron et al., 2017) and treatment measures designed to reduce 620	

evaporative water loss are part of the therapeutic approach to dry eye disease, either by the 621	

provision of moisture-conserving spectacles (Tsubota Yamada and Urayama, 1994) or, in 622	

severe DED,  by performing  tarsorrhaphy, as a temporary measure (Welch and Baum, 1988; 623	

Nelson, 1989; Valim et al., 2015). It is self-evident but rarely emphasized, however, that 624	

while in the dry eye patient, overnight eye closure during sleep removes the physical basis of 625	

hyperosmolarity, interactions with the proinflammatory conditions induced by the closed eye 626	

state (Sack et al., 2000) make its therapeutic implications difficult to predict. It is not 627	

expected that the effect of eye closure on tOsm and the level of inflammatory mediators in 628	

the tears and tissues will be concordant. We predict that while tOsm will fall, the level of 629	

inflammatory mediators will not be affected in the short term and might even increase. 630	

 631	

5. In the diagnosis of DED it is recommended that tOsm is measured in both eyes, since the 632	

between-eye difference increases in DED and is of diagnostic value. In the report of Lemp et 633	

al. (Lemp et al., 2011) normal subjects demonstrated a mean inter-eye difference of 6.9 ± 5.9 634	

mOsms/L, whereas patients with mild or moderate DED demonstrated a difference of 11.7 ± 635	

10.9 mOsms/L and those with severe DED, a difference of 26.5 ± 22.7 mOsms/L. It is likely 636	

that, for the detection of systemic dehydration, it will be sufficient to take the measurement in 637	

one eye only, after bilateral eye closure, although this will need confirmation based on 638	

comparative studies. 639	

 640	

6. It has been argued that plasma osmolarity may be of less value in the diagnosis of chronic 641	

dehydration than acute dehydration (Armstrong, 2007; Baron et al., 2015), for instance 642	

because dehydration may cause a rise in plasma osmolarity that still falls within the normal 643	

range and yet represents dehydration in that individual. However, in the environment of a 644	

care home for the elderly it would be possible to obtain baseline BTO readings when the 645	

patient was in a state of euhydration, against which to compare subsequent measurements. 646	
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 647	

7. In summary, measurement of the Basal Tear Osmolarity is proposed as a new diagnostic 648	

approach worthy of further consideration. Its utility in the diagnosis of body dehydration in 649	

the elderly could usefully be studied in the environment of the nursing home and compared to 650	

that achieved using current practices. Preliminary studies suggest that, as predicted, the 651	

variance of BTO measurements in both normal and DED subjects, is lower than that of the 652	

tOsm measured in uncontrolled, clinic conditions, (Willshire et al., 2017). Future studies are 653	

planned in larger populations and will include a direct comparison of the BTO with pOsm  654	

at different levels of body hydration and the measurement of the BTO in open eye conditions 655	

at an RH close to 100%. By conducting such studies in patients with different subtypes of 656	

DED, we hope to better define the period of eye closure required for a substantive, clinical 657	

BTO test.  658	

 659	

Although current studies have indicated, in a preliminary way, a numerical similarity 660	

between BTO values measured by the TearLab® device and reference values for pOsm in 661	

normally hydrated individuals, it must be recognised that osmolarity measured by electrical	662	

impedance  does not fully represent the concentration of all particles in solution and hence 663	

must be expected to slightly underestimate the full osmolarity of the tears.  664	

The TearLab® device detects the presence of charged particles, such as ions and does not 665	

recognize uncharged molecules such as urea or glucose. Urea is a permeant molecule whose 666	

concentration in the tears is similar to that in the plasma, accounting, according to one source, 667	

for around 6 mOsm/L in normal subjects (Gavrilov et al., 2000). Tear glucose, in non-668	

diabetic subjects contributes about 0.2 mOsm/L (Sen and Sarin, 1980). Thus it may be 669	

predicted that when direct comparisons of tOsm and pOsm are made, the pOsm will be about 670	

6 mOsm/L higher than the simultaneously measured tOsm. This prediction needs to be 671	

confirmed by a direct comparison of tOsm with pOsm in the same individuals combined with 672	

measurements of plasma composition, but does not diminish the potential values of the 673	

proposed approach. 674	

 675	

 676	
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