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Abstract—Code reading is an important skill in programming.
Inspired by the linearity that people exhibit while natural lan-
guage text reading, we designed local and global gaze-based mea-
sures to characterize linearity (left-to-right and top-to-bottom) in
reading source code. Unlike natural language text, source code is
executable and requires a specific reading approach. To validate
these measures, we compared the eye movements of novice and
expert programmers who were asked to read and comprehend
short snippets of natural language text and Java programs.

Our results show that novices read source code less linearly
than natural language text. Moreover, experts read code less
linearly than novices. These findings indicate that there are
specific differences between reading natural language and source
code, and suggest that non-linear reading skills increase with
expertise. We discuss the implications for practitioners and
educators.

I. INTRODUCTION

For over five thousand years, human history has been written
down in a variety of forms which represent our cognitively rich
natural spoken languages. Even when manifested in written
form, the lexical, syntactic, semantic, and cultural complexities
inherent in spoken communication make reading and writing
difficult skills to learn and master.

For over fifty years, computer programs have been written
in a variety of source code languages. While having no
commonly spoken form, the design of source code languages
is inspired by natural languages, each with its own formal
style. Though computer programs are primarily thought of as
being executed by a computer, their source code form must
be understandable in order to be read and written by humans.
To become an expert computer programmer, one must master
source code reading and writing skills.

Fortunately, programmers can leverage their mastery of
natural language literacy to learn to read and write source code

(SC). However, programs differ from natural language texts
(NT) in two important ways. First, programs are lexically and
syntactically different from natural language texts. Lexically,
they are composed from a limited vocabulary, with some words
used as programming language keywords, and others used
more freely as identifiers to name program constructs like
variables and methods. Programmers must consciously choose
meaningful names in order to communicate to others what the
program does and how it works [17]. Syntactically, programs
are laid out and organized differently than natural language
texts. They feature greater use of formally defined structures
and multiple forms of indented layout (both horizontal and
vertical).

The second difference is semantic. According to the Kintsch
text comprehension model [15], natural language text is
typically understood in two concurrent phases: text (how
it is written down) and domain (what it means). Source
code comprehension however needs a third dimension of
comprehension: execution [22]. Thus, in order to understand
a program’s goals, programmers must not only master the
ability to read its words and structures, but must also be
able to trace source code execution to discover its operational
semantics [23]. Sorva [28] posits that expert programmers
rarely make an explicit distinction between text structure and
text execution because they feel it is obvious. This might not
be so obvious for novices.

For the past two years, we have organized workshops
focusing on the interpretation of eye tracking data for pro-
gram comprehension [6]. We and others have come to the
realization that due to the similarities between source code and
natural language, many of the same processes must underlie
source code reading [25]. In this paper, we illustrate how we



have adapted eye movement-based metrics used originally to
characterize natural language reading to describe how novice
and expert programmers read source code. Specifically, we
expanded on the concept of linearity in reading, and developed
and tested several linearity metrics.

Linearity represents how closely readers follow a text’s
natural reading order — the top-to-bottom, left-to-right path
in which words are written in Latin script languages like
English.1 Proficient natural language readers are known to
maintain comprehension even though they skip words as they
read and reread words less frequently than novice readers
(i.e., children learning to read) [20]. Based on the observation
that novice programmers seem to read source code “just as
one might read a story in a natural language, starting at the
beginning and reading through to the end” [26], we introduce
the term story reading for this reading behavior.

The research questions we address in this paper are

• RQ1: Do the linear trends observed in natural language
reading hold for novices reading source code?

• RQ2: With respect to reading linearity, how do novices
reading source code differ from experts?

Here, we operationalize linearity using two sets of metrics
based on gaze. The set of local metrics include the fraction of
gaze locations that move with or against story reading order
(measured in elements and lines). Our set of global metrics
is based on fixation sequences and quantifies how closely a
participant follows a particular reading pattern. These metrics
assess the participants’ degrees of alignment to two reading
orders: story reading and execution order.

We evaluate these metrics in a study that had novice and
professional programmers perform computer-based compre-
hension tasks on short English texts and also on programs
written in Java and pseudocode, while being monitored with
an eye tracking device.

Our results show that novice participants read code less
linearly than they read English text. 80% of the the novices’
eye movements were linear when reading natural language text
and 70% when reading source code. For experts on the other
hand, we found only 60% linear eye movements on source
code. The experts’ reading patterns can be characterized by a
greater number of eye gaze movements that skip intermediate
words and lines.
The contributions of this paper include:

1) Operationalization of linearity metrics for reading source
code

2) Validation of these metrics for natural language reading
and source code

3) Characterization of differences in reading behaviors be-
tween novice and expert programmers

4) Automatic detection of story and execution order source
code reading patterns

1While many natural languages follow other word orders, programming
languages almost always follow the Latin script reading direction.

II. BACKGROUND

We present a brief description of eye tracking research
necessary to understand the measures presented later and
discuss eye tracking studies on reading natural language text
and program comprehension with a focus on the latter.

Many previous eye tracking studies conducted on natural
text reading provide abundant insights into the visual attention
behavior. During reading, the eye stays upon one location for a
few hundred milliseconds and then moves to the next location.
This relatively steady state between eye movements is called a
fixation. The amount of time spent in the location is the fixation
duration. The movements that re-position the eyes’ focus over
the text are saccades. Processing of visual information occurs
only during fixations. Backward movements in the text are
called regressions; about 10 to 15% of fixations are regressive.
Good readers are characterized by few regressions and short
fixations. Difficult texts usually induce longer fixations, short
saccades and frequent regressions. Fixation duration has been
shown to be positively correlated with cognitive effort. See
Rayner et al. [19] for a detailed description on eye movements
in reading.

In the programming domain, however, there have been only
a few notable works to report on the nuances of gaze in code
reading. One of the pioneering studies of the role of gaze
in programming [9] suggests that viewing strategies when
reading short, but complex algorithms differ from those of
natural language. Crosby et al. [8] also found that novices do
not use beacons as discussed by Brooks [3], whereas experts
focus mainly on them. Uwano et al. [30] identify a pattern
called Scan during which programmers read the entire code
snippet to get an idea of what the program does. They state
that 70% of lines in source code were seen in the first 30%
of time spent. A replication of this experiment confirmed the
finding [24].

Both Fan [10] and Busjahn et al. [5] conducted eye tracking
studies on short source code programs. Fan showed that code
scanning patterns of programmers are related to the way the
programs were commented i.e., programmers could chunk
larger code blocks if comments were present. However, the
presence of comments did not improve the identification of
beacons. Busjahn et al. noted a few basic differences between
reading source code and natural language text, e.g. increased
fixation durations and regression rates for code.

Hansen et al. [12] investigated factors that impact code
comprehension. They studied 10 Python programs with subtle
differences between them with the task of predicting the
output. They conducted a standard questionnaire-based online
version and an eye tracking version of the study. Results
from the questionnaire-based study indicate that even subtle
notation changes can have a large effect on the performance
of programmers. The results of the eye tracking part of their
study are pending.

Turner et al. [29] used an eye tracker to compare short
C++ and Python programs in a between-subjects study. The
38 students were asked to find a logical error in the programs.



Students spent significantly different amounts of time look-
ing at the lines with bugs than the other code lines when
comparing their behaviors between programming languages.
Novices had higher fixation rates on buggy lines in Python,
whereas non-novices had higher fixation rates on buggy lines
in C++. The authors call for more studies to determine other
differences between languages.

Bednarik et al. [2] found that repetitive gaze patterns were
associated with less expertise when students were debug-
ging Java programs using a program visualization system.
Rodeghero et al. [21] found that 10 developers looked more
at a method’s signature than its body when they were asked
to summarize Java methods while being recorded by an eye
tracker. Fritz et al. [11] conducted a study with 15 developers
and used signals from eye tracking, electroencephalogram
(EEG), and electrodermal activity (EDA) sensors to predict
if developers found a task to be difficult. The task was to read
short C# programs and answer multiple choice questions about
what the program did. Their results show that eye tracking
measures such as fixations, saccades, and pupil size were
important to predict task difficulty.

Siegmund et al. [25] conducted a study with 17 program-
mers inside an fMRI scanner. The programmers were asked to
comprehend short source code snippets. They find a distinct
pattern active in five brain regions, all necessary for program
comprehension and that language processing is an essential
part of program comprehension.

In our most recent work [6], we provide an introduction on
how to use eye tracking to study programmer behavior while
reading code. A tiered coding scheme was developed to further
understand existing program comprehension strategies [1],
[3], [16], [27]. Both objective and subjective behaviors were
coded. The scheme includes codes based on the location of
a single fixation as well as codes characterizing sequences of
multiple fixations, called patterns. For example, some patterns
introduced were Linear Scan (where gaze moves linearly
through parts of the code) and Jump Control (where gazes
follows code execution order).

None of the studies mentioned discuss the concept of
linearity and whether or not the linearity effect in reading
natural languages transfers to reading of source code. We
believe this is an important step taken for further research
using eye tracking in program comprehension.

III. STUDY

In this section, we describe our study: participants, tasks,
experimental procedures, measures, and threats to validity.

A. Participants

Our study looked at the similarities and differences in two
populations: novice and expert programmers.

We conducted a longitudinal study with 14 novices, who
attended a Java beginner’s course at Freie Universität Berlin.
Participants were primarily recruited via flyers posted on
the university’s bulletin boards. With the exception of two
participants, all the others were university students (none in

public class Vehicle{
String producer, type;
int topSpeed, currentSpeed;
public Vehicle(String p, String t, int tp){
this.producer = p;
this.type = t;
this.topSpeed = tp;
this.currentSpeed = 0;

}
public int accelerate(int kmh){
if ((this.currentSpeed + kmh) > this.topSpeed){

this.currentSpeed = this.topSpeed;
} else {

this.currentSpeed = this.currentSpeed + kmh;
}

return this.currentSpeed;
}
public static void main (String args[ ]){
Vehicle v = new Vehicle("Audi","A6",200);
v.accelerate(10);

}
}

LISTING 1. Sample program presented to both novices and experts

computer science). We provided a participation statement if
requested (no grade was given). During the weekly Java class
they individually worked through an online course,2 while
there was a tutor present to provide assistance. Students were
allowed and encouraged to seek help from their classmates.

The course consisted of six modules, each spanning several
weeks. These modules covered objects, classes, fundamental
data types, decisions, and loops. The students’ eye movements
were recorded after they finished each module. Several partici-
pants dropped the course eventually, leading to a sparse dataset
in later modules.

We also recruited a group of six professional software
engineers who worked at different software companies in
Berlin. The participants were promised that all data and anal-
yses about their participation would be anonymized and kept
confidential from their employers. No one was remunerated
for participating.

All study participants filled out a demographic questionnaire
about their age, gender, proficiency with English, and their
programming skills and experience. The novices, who were
between 19 and 33 years old, included 7 females. The experts
were between 26 and 49 years old and only included one
female. While everyone had at least medium English profi-
ciency, German was their primary language (except one novice
who spoke French). The novices self-reported having little
to no prior programming experience, experts’ programming
experience ranged from 5 to 28 years and all were proficient in
several programming languages including Java. At the time of
the recording, all were employed as professional programmers.

B. Experimental Procedure and Materials

The expert participants were studied individually at their
offices or in another location of their choice. The novice

2http://www.udacity.com/course/cs046



participants were recorded after finishing each of the six
modules directly in the classroom.

Each participant was set up with an SMI RED-m remote
eye tracker set to sample at 120 Hz. All of the eye tracking
data was recorded by the open-source tool Ogama (OpenGaze-
AndMouseAnalyzer).3 Once a participant ran the eye tracker’s
calibration routine, he or she was ready to begin. Before the
first recording on SC, novices were asked to read three English
language passages of four to five lines. Each participant was
given the texts in a randomly selected order. After finishing
the text in each trial, they had to answer a comprehension
question.

Each module’s recording session consisted of asking the
novice participants to read a set of three programs ranging
from a few lines to an entire screen full of text. Two of
these programs were in English pseudocode, the others were
complete Java classes. When required, the source code also
included specific inputs to determine an execution order.

Experts looked at six programs in total, two of which were
the same ones that novices saw in the latter weeks of the
study. An example of one of these programs can be seen in
Listing 1. The remaining programs were comparable in length
to the novices’ stimulus material, however, they were more
complex and included concepts the beginner’s course did not
cover, in order to prompt experts to actually use their advanced
programming skills.

Immediately after reading each program, the participants
were asked one of three possible questions: (1) write a
summary of the code, (2) write the value of a variable after
program execution, or (3) answer a multiple-choice question
about the algorithmic idea. The order of programs and tasks
given to the participant were both shuffled for each trial to
avoid any bias caused by coupling a certain program to a
specific question.

In total, we recorded 17 trials of novices reading natural
language texts, and 101 trials of novices reading source
code. 35 of these 101 source code trials occurred just after
participants finished their first module. The remaining 66 trials
were conducted as the novices finished their next five modules.

Some experts did not finish reading the Java programs
during their recording session. In total, we were able to record
21 trials. When answering RQ2, we compare these 21 trials
against the 101 novice trials.

C. Measures

There are two independent variables in our experiment:
whether the participant is from the novice or expert pro-
grammer sample population and whether they read a natural
language text or source code.

We developed nine dependent measures (see Table I) and
used them to analyze data records from an eye tracking
device. These consist of a time-ordered sequence of gaze
fixations, each containing a gaze location (combining both
eyes to produce a single (X, Y) screen coordinate) and the

3http://www.ogama.net

fixation’s duration (in milliseconds). The gaze coordinates are
then mapped to line and word positions in the texts read by
each participant using a tool called EyeCode.4

Participants do not always fixate on words on the screen;
sometimes they look at empty space nearby. We were able
to map 90.51% of the natural language fixations to a line of
text. For the source code trials, we could map 82.88% of the
novices’ fixations and 72.72% of the experts’ fixations to lines
in source code.

The first five of our measures are computed from the fixated
line and word positions. They represent the fraction of gaze
records (per trial) where the participant moved their eyes with
or against the linear reading order.

The next measure, Saccade Length, is the average distance
between the participant’s two consecutive fixations in each
trial. It is commonly found in prior eye tracking studies that
experts are more likely to make longer saccades than novices.

Element Coverage measures the percentage of words (i.e.,
source code elements) in the text that the participant looked at.
Experts are known to be better able to focus on fewer, more
relevant, words in the source code than novices can.

The last two measures indicate to what extent the partici-
pants’ gaze followed the models Story Order and Execution
Order. Story Order represents reading the program line by
line, from top to bottom, the way natural-language text is
generally read. Execution Order stands for reading the lines
according to control flow. In order to compare how well the
participants’ actual gaze path matches these models, we em-
ploy an optimal string matching algorithm called Needleman-
Wunsch (N-W), which has been applied to sequences of eye
movements before by Cristino et al. [7]. This string algorithm
computes a global similarity score, where a high score implies
that the two sequences are close to each other. For instance,
a person’s score of 10 asserts a higher accordance with the
order of lines specified by the model than a score of 1.

The N-W algorithm is often applied to compute the simi-
larity of DNA and protein sequences, where both sequences
possibly contain mutations. However, in our settings only
one sequence can have mutations, namely the gaze, while
the model presents the prototype. Subsequently, the goal is
to determine how far the gaze is from the respective model.
Mutations in the model are less acceptable than mutations in
the gaze, so we need to keep the model in one piece as much as
we can. Thus, we penalize a gap in the model more than a gap
in the gaze sequence. Gaps will be preferentially inserted into
the gaze sequence rather than the model. To operationalize
this, we designed the following scoring scheme: +3 for a
match, -3 for a mismatch, -1 for a gap in the participant’s
gaze, and -2 for a gap in the model.

The approach to compare the gaze to the exact model is
however slightly naı̈ve, since texts are usually read more than
once. Thus, we adapted the alignment measure to identify
where the participant reread the text in order to find the
optimal alignment between model and gaze. We realize this

4https://github.com/synesthesiam/eyecode



TABLE I
GAZE-BASED MEASURES. IN EACH TRIAL, F IS THE SET OF ALL RECORDED FIXATIONS. Fi (WHERE i = {1, . . . , n}) IS THE FIXATION RECORDED AT

TIME INDEX i. L(Fi) IS THE LINE NUMBER OF THE FIXATION AT INDEX i. IN EACH TRIAL, W IS THE SET OF WORD INDICES IN THE TEXT. W (Fi) IS THE
WORD NUMBER OF THE FIXATION AT INDEX i.

Measure Definition Computation

Vertical Next Text % of forward saccades that either stay on the same
line or move one line down. % of all Fi, where L(Fi)− L(Fi+1) = {0,−1}

Vertical Later Text % of forward saccades that either stay on the same
line or move down any number of lines. % of all Fi, where L(Fi) ≤ L(Fi+1)

Horizontal Later Text % of forward saccades within a line. % of all Fi, where L(Fi) = L(Fi+1)∧W (Fi) ≤W (Fi+1)

lo
ca

l

Regression Rate % of backward saccades of any length. % of all Fi, where W (Fi) > W (Fi+1)

Line Regression Rate % of backward saccades within a line. % of all Fi, where L(Fi) = L(Fi+1)∧W (Fi) > W (Fi+1)

Saccade Length Average Euclidean distance between every succes-
sive pair of fixations.

∑n−1

i=1
Distance(Fi, Fi+1)

|F | − 1

Element Coverage Fraction of words the participant looked at. % of W for
|Unique(W (Fi))|

|W |

gl
ob

al

Story Order N-W alignment score of fixation order with linear
text reading order. Alignment(L(F ),Story-Order-Pattern)

Execution Order N-W alignment score of fixation order with the
program’s control flow order. Alignment(L(F ),Execution-Order-Pattern)

by repeating the model and aligning this extended model
sequence to the gaze. This dynamic approach finds the optimal
number of repeats by iteratively appending a copy of the model
and computing the similarity score until the lengths of the
gaze and model sequences correspond with one another. In
the end, the algorithm returns the alignment with the highest
score together with the number of model repetitions used to
achieve it. Each model instance in this final sequence denotes
one pass through the text.

Table II illustrates the procedure for Story Order (Line 1,
2, 3, 4) and Execution Order (Line 1, 2, 3, 4, 2, 3, 4, 2) with
the sample code in Listing 2 and a participant’s actual gaze
sequence (Line 1, 2, 3, 1, 2, 3, 2, 3, 2, 1, 2, 1, 3, 4, 3, 2).
Repeated fixations within the same line have been removed.

When testing how close the participant’s gaze is to Story
Order (i.e. Line 1, 2, 3, 4), we get a naı̈ve score of only -12. We
can improve the alignment if we also assess how many times
the participant read through the program. If the participant
read the text 4 times, then we would get a dynamic score of
24. Looking at Execution Order, the naı̈ve score is 2, while the
dynamic score is 24. The participant followed the control flow
twice. Looking at the exact models, this participant read the
program more according to control flow than line-wise from
top to bottom. When comparing the gaze to multiple instances
of the model, both models achieve the same score, however
with 4 repetitions for the shorter Story model and only 2 for
Execution. Since the sequences are of comparable length now,
there are less gaps reducing the score.

1 n = 3
2 while (n > 1):
3 print n
4 n = n - 1

LISTING 2. Code with Story Order: Line 1, 2, 3, 4 and Execution Order:
Line 1, 2, 3, 4, 2, 3, 4, 2

D. Threats to Validity

As mentioned before, some novice participants dropped out
of the course and did not finish all of the trials. This does
not affect RQ1 (comparing novices reading natural language
vs. source code in module 1), as we are only interested in the
early novice.

When considering RQ2, we pool together novice trials
across several modules, so some trials represent novices with
up to 10 hours more coding experience than others. We
highlight this explicitly, however we always compare novices
only to the pool of expert programmers who have orders
of magnitude greater and more frequent coding experiences.
While the pooled data does not allow for fine-grained analyses
of the novices’ progress, it covers a broad range of novice
behavior. According to a multinational study [18], student
programmers show difficulty comprehending small programs
like those we use even after a whole year of CS study.

In order to reduce bias by the stimulus programs, both sets
of stimulus programs were designed to cover a range of con-
cepts and varied in facets like identifier naming conventions.



TABLE II
SAMPLE ALIGNMENTS FOR LISTING 2 (EVERY SECOND MODEL REPETITION IS HIGHLIGHTED).

Approach Alignment Score Repetitions

Naı̈ve
model : − − − − − − − − − 1 2 − 3 4 − −

| | | |
gaze : 1 2 3 1 2 3 2 3 2 1 2 1 3 4 3 2

-12 1

Story Order

Dynamic
model : 1 2 3 4 1 2 3 4 1 2 3 4 1 2 − 3 4 − −

| | | | | | | | | | | |
gaze : 1 2 3 − 1 2 3 − − 2 3 2 1 2 1 3 4 3 2

24 4

Naı̈ve
model : − − − 1 − − 2 3 − 4 2 − 3 4 − 2

| | | | | | |
gaze : 1 2 3 1 2 3 2 3 2 1 2 1 3 4 3 2

2 1

Execution Order

Dynamic
model : 1 2 3 4 2 3 − 4 2 1 2 − 3 4 2 3 4 2

| | | | | | | | | | | |
gaze : 1 2 3 1 2 3 2 3 2 1 2 1 3 4 − 3 − 2

24 2

When mapping the gaze coordinates and the on-screen texts,
we found that despite calibrating the eye tracker to each
participant prior to every task, the recorded gaze location
often appeared too low or too high. In much rarer cases, it
was also shifted to the left or right. This kind of error can
happen when the participant moves his or her head too far
relative to the screen. We needed to correct these errors, but
were wary of introducing additional bias. The authors worked
together in pairs to collaboratively produce a corrected version
for every trial. When there were disagreements, they rechecked
the scanpaths and arrived at a consensus to determine the final
corrected offset.

The first five measures can be computed directly from the
screen coordinates, without requiring any corrections to the
correspondence map. To further increase validity, we also
filtered out fixations which were clearly outside the bounding
box of the text (over 100 pixels outside) as unmapped. We
compared our measures computed on this uncorrected data to
the same measures computed on the corrected data and found
that 98–100% of the measures were in agreement.

In our study, we operationalize reading linearity with seven
fixation-based measures and two global measures. The linear-
ity of natural language reading can be measured using just
the regression rate [13]. However, this single measure misses
relevant aspects of source code reading. For example, source
code texts contain shorter horizontal passages than typical
natural language texts, sometimes having just one source code
element on a line. Our mix of horizontal and vertical measures
provides a more detailed description of the reading patterns.

IV. RESULTS

A. Novices: Natural Language versus Source Code

We first report on the linearity measures for novices reading
natural language text and source code at the beginning of their
Java course (Module 1). We expected that since novices lack
any specialized reading strategies for source code, they would
make use of their usual linear reading approach that they apply

to reading natural language. We should therefore see that the
linearity measures are similar in the two conditions.

Considering that the participants were non-native English
speakers, the regression rate of 15.62% for NT is well in
accordance with the 10 to 15% reported for English text [19].

Notice in Figure 1 that the measures Vertical Next Text,
Vertical Later Text, and Horizontal Later Text are higher for
natural language text than for source code, since they indicate
linearity. Regression Rate and Line Regression Rate, on the
other hand describe non-linear reading. Consequently they
show a lower rate.

The novices followed the linear Story Order on natural
language texts with approximately 80% of their eye move-
ments (computed as the non-regressive portion of saccades),
and Module 1 source code still with 75%.

Due to the sparseness of the data set, tests for normality
are not appropriate, hence we employed the non-parametric
Wilcoxon Signed Rank test for matched samples. We found
that for the first four measures shown in Figure 1, Vertical
Next Text, Vertical Later Text, Horizontal Later Text, and
Regression Rate the differences are statistically significant (see
Table III). Only Line Regression Rate was comparable for the
two types of text. The test statistic W provides the sum of the
positive ranks. The values of 21 and 0 respectively indicate that
the direction of the differences was persistent for all pairs.

TABLE III
WILCOXON SIGNED RANK TEST FOR NATURAL LANGUAGE VS. SOURCE

CODE (MODULE 1)

Vertical Next Text: W (6) = 21,Z = 2.20, p = 0.03∗
Vertical Later Text: W (6) = 21,Z = 2.20, p = 0.03∗

Horizontal Later Text: W (6) = 21,Z = 2.20, p = 0.03∗
Regression Rate: W (6) = 0, Z = −2.20, p = 0.03∗

Line Regression Rate: W (6) = 13,Z = 0.52, p = 0.69

Furthermore, we compared the average Saccade Length
for natural language and the Java source code in Module 1.
Novices have a significantly higher average saccade length
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Fig. 1. Linearity measures for novices.

(2.28◦ of visual angle (98.13 pixels)) when reading natural
language text than when reading source code (Module 1)
(1.68◦ of visual angle (71.44 pixels)): W (6) = 21, Z =
2.20, p = 0.03∗.

When comparing Element Coverage, novices looked at an
average of 83.46% of the words in the natural language texts,
but only at 60.38% of the source code elements (i.e. keywords
and identifiers) in the Java code for Module 1. The difference
is statistically significant: W (6) = 21, Z = 2.20, p = 0.03∗.

TABLE IV
N-W RESULTS COMPARING THE STORY ORDER FOR NATURAL

LANGUAGE TEXTS AND SOURCE CODE (MODULE 1).

Natural
Language

Source Code
(Module 1)

Naı̈ve N-W Score -29.82 -24.11
Story Order Dynamic N-W Score 25.88 23.71

Repetitions 6.35 3.89

Finally, we tested the alignment of reading natural language
and source code (Module 1) to Story Order (see Table IV).
We present two N-W global alignment scores. The first
(naı̈ve) compares the participant’s line order with the story
order sequence. The second (dynamic) allows the story order
sequence to repeat a number of times. The participant’s line
order was compared with the story order sequences repeated
an increasing number of times until it maximized the N-
W score for the participant’s fixations in that trial. This
accounts for the fact that the text is read several times. Note
that the scores for natural language and the source code
in Module 1 are very similar to one another. There is no
statistically significant difference between natural language
and the source code in Module 1, not for the (naı̈ve) score
(W (6) = 9.5, Z = −2.20, p = 0.91), nor the dynamic
score (W (6) = 12, Z = 0.31, p = 0.84). This supports
our expectation that novices start out with a primarily linear

approach to reading code. The results indicate that both the
natural language text and source code were read multiple
times, but participants read the natural language text 6.35 times
vs. 3.89 times for source code. The greater the number of
repeated read-through, the higher the N-W alignment score
will be.

RQ1 asked if the story reading approach holds true for
novices reading source code (Module 1). The N-W score,
reflecting the general reading approach aligned to the linear
Story Order, and Line Regression Rate are comparable for
natural language and source code (Module 1). However, we
find significant differences for the local measures Vertical Next
Text, Vertical Later Text, Horizontal Later Text, Regression
Rate, Saccade Length, and Element Coverage.

B. Novices vs. Experts

In this section, we report on the linearity measures that
compare experts reading source code to novices (at any stage
in the Java course) reading source code. We combined all of
the novices’ trials from every module in the class, and not
just module 1 as we did for RQ1. We expect that since the
novices rely on their natural language text reading behaviors
when reading source code, there will be significant differences
between them and the experts. We note that the novices and ex-
perts read different programs (for the most part; two programs
were read by both sets of participants). Since the novices were
enrolled in the Java class, their programs were tailored to be
accessible to their (considerably lower) experience level. In
this section, we report statistics that compare the novices to
the experts reading their respective programs.

In Figure 2, we show the results of our first five measures
comparing the pool of novices to the pool of experts (Figure 2).
The measures for linearity Vertical Next Text, Vertical Later
Text, and Horizontal Later Text are higher for novices than
for experts. The same holds true when computing the non-
regressive portion of the saccades, 70% linear eye movements
for novices and 60% for experts. Since normality cannot
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Fig. 2. Comparison of linearity measures for novices and experts reveals more linear behavior in the eye movements.

be assumed and we have two different samples, we tested
these differences with the non-parametric Mann-Whitney test.
We found that the differences are statistically significant for
all measures except Line Regression Rate (see Table V),
indicating that experts have a less linear reading behavior for
code than the novices.

Next, we calculated the average Saccade Length for all
modules and source codes. Novices’ saccades had an average
length of 1.86◦ of visual angle (80.26 pixels), while experts’
saccade covered 3.12◦ of visual angle (133.90 pixels). A
Mann-Whitney test indicates that average novices’ saccades
were significantly shorter than experts’: U = 105, p <
0.001∗∗∗. This result matches our expectations that experts are
able to make larger jumps during reading to focus on important
source code elements.

With regard to Element Coverage, we found that novices
directly looked at 52.42% of the source code elements, while
experts looked at just 41.27% of the elements. Again, the
difference is significant, U = 84, p < 0.01∗∗. This result
implies that experts are better able to focus on the relevant
source code elements than novices, and is in line with previous
studies on expertise.

Finally, we compared the alignment of the novices’ and ex-
pert reading order. The results are shown in Table VI. One can
see that novices read source code much more linearly (i.e., in
Story Order) than the experts did because the novices’ higher
scores indicate better alignment with the Story Order model.
This difference is significant both for naı̈ve and dynamic
scores: U = 82, p < .001∗∗∗ and U = 84, p < .0001∗∗∗,
respectively.

TABLE V
MANN-WHITNEY RESULTS FOR NOVICES VS. EXPERTS

Vertical Next Text: U = 81, p < 0.001∗∗∗
Vertical Later Text: U = 76, p < 0.01∗∗

Horizontal Later Text: U = 84, p < 0.001∗∗∗
Regression Rate: U = 0, p < 0.001∗∗∗

Line Regression Rate: U = 41, p = 0.97

TABLE VI
N-W RESULTS COMPARING NOVICES AND EXPERTS IN STORY AND

EXECUTION ORDER.

Novices Experts

Naı̈ve N-W Score -73.47 -161.52
Story Order Dynamic N-W Score -12.82 -113.62

Repetitions 5.36 3.95

Naı̈ve N-W Score -77.27 -89.81
Execution Order Dynamic N-W Score 8.68 -46.50

Repetitions 6.69 2.56

The low, negative Story Order global alignment scores for
experts indicates that Story Order is not a good model for
their reading behavior. Instead, notice that the Execution Order
scores are higher, indicating a better fit with an order matching
the control flow of the program.

Also, one can see that the number of repetitions of both the
text and execution order line number sequences is much lower
for experts than for novices. This indicates that the experts
were more efficient in their reading of the source code than
novices, agreeing with the Element Coverage finding above.

Somewhat counter-intuitively, experts have lower similarity
scores for Execution Order than novices. This is due to the
linear nature of the programs that the novices read. Conditions
and loops were only introduced in later modules, therefore
the execution orders of the programs were mainly linear.
Comparing Story and Execution order with N-W illustrates
this effect, with an average similarity score of −1 for novice
programs and −71 for expert programs. Novices tend to read
linearly and the execution order of their programs is rather
linear, hence they get higher similarity scores for execution
order than experts.

RQ2 asks how experts differ from novices in linear reading.
For the measures representing the fraction of eye movements
where the participant moved their eyes with or against the lin-
ear reading order, we find that except for the Line Regression
Rate, experts exhibit significantly different reading behaviors



than novices. The same applies to Element Coverage, Saccade
Length and the global alignment of the reading pattern to the
linear Story Order. This result matches our expectations that
the experts were better at reading code than the novices, but
the additional details illustrated by the linearity measures we
introduced in this study clarify much more precisely how these
differences were composed.

V. DISCUSSION

Programs are a particularly difficult form of text that
requires problem solving skills. Often the viewing of algo-
rithms appears closer to reading mathematical formulas or
interpreting graphs than to reading a “story” form of text.
Unlike natural language text, algorithms contain a wealth of
information condensed within non-redundant text.

The difficulty of reading natural language text depends on
the participant and the context. In many eye tracking studies,
the majority of significant effects are often the result of
participant variability. Studies from many domains such as
reading and problem-solving, have shown that eye movements
of experts differ from those of novices. For example, Kennedy
and Murray [14] gave evidence that poor readers and good
readers show different reading strategies for varying difficul-
ties of text and that fixation time was longer for difficult text.

The research questions we addressed in this paper were
• RQ1: Do the linear trends observed in natural language

reading hold for novices reading source code?
• RQ2: With respect to reading linearity, how do novices

reading source code differ from experts?
Our results show that novice participants follow the linear

Story Order on natural language texts with approximately 80%
of their eye movements and on source code with 70%. While
there are differences between reading natural language and
source code, there is still a fairly strong linear character to
novice source code reading. The non-linear portion might be
caused by novices moving their gaze around in search for
comprehension cues in the unfamiliar type of text. Expert
programmers showed 60% linear eye movements, they adapt
their natural language reading strategies when reading source
code. We believe that experts are applying their knowledge of
program execution to aid in comprehension.

The Execution Order model better explains the experts’
reading approach than Story Order does. This suggests that
experts tend to trace at least parts of the code. For novices on
the other hand, none of the two models is predominant.

VI. IMPLICATIONS

The results presented here have implications both for prac-
titioners and for programming educators.

A. Implications of findings for practitioners

The significance of this research for industry lies in the
findings on the code reading behavior of the experts and in
the development of measures which may provide the basis of
diagnostic tools to improve the daily practices of programmers.

We find evidence that experts have more advanced skills in
adapting their natural language reading strategies for computer
programs. We find that they take advantage of non-linear
reading orders and specific code reading strategies (e.g. code
tracing). We feel that this insight could lead to improved
models of program comprehension. In addition, tools that
incorporate the measures we have introduced in this paper
could provide the means to automatically recognize developer
reading patterns and use these to infer comprehension strate-
gies. Such tools could be deployed as diagnostic aids built into
the programming environment to detect patterns which may
indicate understanding, confusion or frustration. We envisage
that subtle recommendation cues can be integrated into the
modern IDEs to guide the attention of programmers and rec-
ommend certain actions without being excessively prescriptive
or critical.

Code reading is obviously related to the styles used in code
writing, both of which are dependent of the design of the
programming language and libraries used by developers. Our
algorithms and models could be used as diagnostics to evaluate
the effect of coding standards and practices on the readability
and understandability of source code [4].

B. Implications of findings for educators

Code reading skills are important for programmers and
contribute to their ability to solve problems. Thus, the de-
velopment of expert reading behavior should be an important
goal of computer science curricula.

Learning to program is challenging, causing many students
to experience difficulty carrying out basic programming tasks
even at the end of a first programming course. Lister et al.
[18] suggest that this is often a consequence not of poor
problem-solving skills, as is commonly thought, but of a
lack of knowledge and skills relating more to reading code
than writing it. These elements are precursors to problem-
solving. However there is little explicit focus on reading
skills in programming textbooks and academic and industrial
courses. Our findings show a differences in reading strategies
between novices and expert programmers that could help guide
curriculum design and teaching practice to explicitly support
the development of reading expertise.

Unlike natural language text, programs have a duality
consisting of the code and the dynamics of what happens
when the code runs. Expert programmers rarely make this
duality explicit because it is obvious to them, but it is not
necessarily obvious to the novice [28]. Linear reading suggests
the application of a mental model that does not include the
dynamic side of this duality. Teachers and novice program-
ming environments should therefore make explicit the ways in
which machine behavior differs from human thought, and that
program code is designed primarily to affect machine behavior.
An early focus on program dynamics will support development
of a valid mental model of what happens during program
execution, or of the notional machine, an idealized abstraction
that serves the purpose of understanding this. Teachers should
be prepared to make use of metaphors and visualizations that



transfer program dynamics from the abstract to the concrete,
and to use tools and development environments that provide
program visualizations. Code reading and tracing skills should
be explicitly taught and practiced in addition to code writing.

Eye tracking integrated into an IDEs or visualization tools
can provide feedback to the student or the teacher. For
instance, informing that the initial Scan of the program was
not sufficient or that someone solving a bug finding task is
concentrating on a code entirely unrelated to the bug, would
be types of interventions that may promote early expert-like
behaviors.

Code reading is, of course, not exactly the same as code
tracing. While it can be useful in program comprehension to
emulate the execution of code, humans can, once expertise
has been gained, apply a range of strategies for assimilating
programs. In an object-oriented program, for example, we can
understand some things about the purpose of a class quite
quickly by looking at the overall structure before tracing in
detail what happens as particular methods execute. In contrast,
the computer can only find the entry point for execution and
proceed from there to execute code in class constructors and
methods as they are called. Experts are able to recognize
beacons that are typical indicators of the programs function-
ality [8], and patterns in code that typify, for example, the
implementation of specific algorithms or class relationships.
We usually do not teach comprehension of algorithms in
the same way we teach reading comprehension, but such an
approach should be built into CS curricula. Teachers should
make the importance of beacons and patterns explicit at
appropriate points in the development of program knowledge
and give practice in identifying examples. Further study of the
way in which experts make use of these may provide guidance
in this.

At the same time we need to be realistic about what degree
of expertise can be developed within a first programming
course. The reading behavior of our novices even at the
end of the course is not “expert” in nature. Expertise in
programming will only develop over an extended period of
study and sustained practice. However, our findings suggest
that embedding strategies for code reading in the curriculum
could provide a strong foundation for the development of
expertise.

It has recently been shown that one of the effective ways to
improve skill acquisition is to cue visual attention of novices to
the locations that experts attend while performing a task [31].
If such intervention should be adopted in teaching program
comprehension skills, knowledge about the expert behavior
and significant differences between expert and novice pro-
grammers is very helpful, so that interventions can concentrate
on these differences.

Instructors could use tools like these to investigate the
effectiveness of new pedagogies. Novice programmers could
monitor their own progress and judge whether they have
achieved personalized learning goals. Additional applications
are discussed in more detail in our prior work [6].

VII. CONCLUSIONS

Our results affect future research on the use of eye tracking
to understand how source code reading occurs in various
theoretical, behavioral, and practical ways. In applying a
range of measures to eye tracking data for novice and expert
programmers reading both natural language text and source
code, our study has been able to determine the degree of
linearity in both groups’ reading strategies. We devised two
distinct types of measures. Our local measures are based on
the relationship between pairs of consecutive fixations. Our
global measures are based on matching sequences of line
fixations to model sequences based on idealized story and
execution reading orders. Taken together, our measures give a
more comprehensive picture of linearity within programmers’
reading strategies.
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K. Sanders, O. Seppälä, B. Simon, and L. Thomas,
“A multi-national study of reading and tracing skills in
novice programmers,” in Working Group Reports from
ITiCSE on Innovation and Technology in Computer Sci-
ence Education, ser. ITiCSE-WGR ’04, Leeds, United
Kingdom: ACM, 2004, pp. 119–150.

[19] K. Rayner, “Eye movements in reading and informa-
tion processing: 20 years of research.,” Psychological
bulletin, vol. 124, no. 3, p. 372, 1998.

[20] K. Rayner, S. P. Ardoin, and K. S. Binder, “Children’s
eye movements in reading: a commentary.,” School
Psychology Review, vol. 42, no. 2, pp. 223–233, 2013.

[21] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch,
and S. D’Mello, “Improving automated source code
summarization via an eye-tracking study of program-
mers,” in Proceedings of the 36th International Confer-
ence on Software Engineering, ser. ICSE 2014, Hyder-
abad, India: ACM, 2014, pp. 390–401.

[22] C. Schulte, “Block model: an educational model of pro-
gram comprehension as a tool for a scholarly approach
to teaching,” in Proceedings of the Fourth International
Workshop on Computing Education Research, ser. ICER
’08, Sydney, Australia: ACM, 2008, pp. 149–160.

[23] C. Schulte, T. Clear, A. Taherkhani, T. Busjahn, and
J. H. Paterson, “An introduction to program comprehen-
sion for computer science educators,” in Proceedings of
the 2010 ITiCSE Working Group Reports, ser. ITiCSE-
WGR ’10, Ankara, Turkey: ACM, 2010, pp. 65–86.

[24] B. Sharif, M. Falcone, and J. Maletic, “An eye-tracking
study on the role of scan time in finding source code
defects,” in Proc. of the Symposium on Eye Tracking
Research & Applications, Santa Barbara, CA: ACM,
2012, pp. 381–384.
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