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Silos with eccentric discharge have long been known to give problems of flow and structural 

integrity, due to variations in wall stresses both vertically and azimuthally: Sadowski and 

Rotter(2011); bulk-online forum(2015). Workers take encouragement from Carson's assertion 

(Carson, 2000) that stress and flow eccentricity is one of the major causes of silo failure. 

There is an extensive body of literature in this field and several excellent reviews: for 

example Sielamovic et al(2010).  

Since the previous paper, studies of eccentricity have continued to be published: 

Recent publications in this field can be divided into 3 broad, often overlapping categories: 

 

Structural analysis, including vessel stresses, failure and buckling. 

Experimental studies: these may be model-based or studies of full-scale silos. 

Modelling: the use of DEM, FEM and continuum models to predict bulk behaviour. 

 

Investigations may include stresses generated, flow patterns and/or both. It is generally 

accepted that flow patterns affect stresses during discharge - Sielamovicz et al(2010) 

 

Structural analysis: there continues to be a lively interest in vessel structures. Buckling has 

been analysed in silos of different methods of construction - Wojcik and Tejchman(2015), 

Sondej et al(2015). Sondej et al considered the implications of their work on the design 

codes. 

 

Experimental studies: Sielamovicz et al(2015) continued their studies of eccentric flow 

patterns in a "2-d" model silo, following on from Sielamovicz et al (2010, 2011). On a much 

larger scale, Ramirez-Gomez et al(2015) measured stresses in the roof sections of an 

agricultural silo. 

 

Modelling: Wang et al(2015) used their FEM system to analyse a flat-bottomed silo, 

predicting stresses, including a comparison with experimental data. Wojcik and 

Tejchman(2015) used a hypoplastic constitutive model within a FEM algorithm for sand to 

generate bulk solids stresses in their work on buckling, illustrating the fluidity of categories 

above. Wang et al(2015) used a macroscopic elasto-plastic constitutive model with linear 

Drucker-Prager criterion and a perfect plastic flow rule.  

The authors' own paper (Matchett et al, 2015) is discussed below. 

 





























































Figure 1 The principal stress cap and essential structure of the principal stress cap, 
eccentric silo model 
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Figure 2  Core-annulus interaction for the Common Interfacial Plane model - CIP 
model 
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Figure 4 

Effects of internal structure on wall normal stress. See Tables 1 & 2 for conditions. Figure 4a: different core models 
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Figure 4 Effects of internal structure on wall normal stress.  

Figure 4b: active and passive cores 
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Figure 8 Concave principal stress cap half-surface 
Figure 8a The accepted picture of lines of major principal stress in hopper/silo 
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Figure 10 Wall stresses for conditions in Figures 8 & 9.  
Figure 10a wall normal stress versus z 
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Figure 10b wall vertical shear stress versus z 
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Figure 10c wall horizontal shear stress 
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Figure 15 

The Yield Quotient (YQ) for a range of simulations, including those in Figures 13 & 14. For details see Table 3. 
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Figure 16 Wall stresses for a silo at incipient core-flow. For conditions see Table 4 

Figure 16a wall normal stress versus z 
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Figure 16 Wall stresses for a silo at incipient core-flow. For conditions see Table 4 
Figure 16b wall vertical shear stress versus z 
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Figure 17 Switch stresses in a silo section 3m radius and 30m tall: conditions shown in Table 5 
Figure 17d Wall normal stress in the region of the switch versus Cartesian coordinate z 
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Figure 18 Switch stresses in a silo section 3m radius and 30m tall with an increase in Kw below the switch: conditions shown in 
Table 5 

Figure 18d Wall normal stress in the region of the switch versus Cartesian coordinate z 
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