Zebrafish model for the genetic basis of X-linked retinitis pigmentosa

Rakesh Kotapati Raghupathy, Daphne McCulloch, Saeed Akhtar, Turki M. Al-mubrad, Xinhua Shu

Research output: Contribution to journalArticle

Abstract

Retinitis pigmentosa (RP) affects 1/4000 individuals in most populations, and X-linked RP (XLRP) is one of the most severe forms of human retinal degeneration. Mutations in both the retinitis pigmentosa GTPase regulator (RPGR) gene and retinitis pigmentosa 2 (RP2) gene account for almost all cases of XLRP. The functional roles of both RPGR and RP2 in the pathogenesis of XLRP are unclear. Due to the surprisingly high degree of functional conservation between human genes and their zebrafish orthologues, the zebrafish has become an important model for human retinal disorders. In this brief review, we summarize the functional characterization of XLRP-causing genes, RPGR and RP2, in zebrafish, and highlight recent studies that provide insight into the cellular functions of both genes. This will not only shed light on disease mechanisms in XLRP but will also provide a solid platform to test RP-causing mutants before proposing XLRP gene therapy trials.
Original languageEnglish
Pages (from-to)62-69
Number of pages8
JournalZebrafish
Volume10
Issue number1
DOIs
Publication statusPublished - Mar 2013

Keywords

  • retinitis pigmentosa
  • genetics
  • zebrafish model
  • XLRP

Fingerprint Dive into the research topics of 'Zebrafish model for the genetic basis of X-linked retinitis pigmentosa'. Together they form a unique fingerprint.

  • Cite this

    Raghupathy, R. K., McCulloch, D., Akhtar, S., Al-mubrad, T. M., & Shu, X. (2013). Zebrafish model for the genetic basis of X-linked retinitis pigmentosa. Zebrafish, 10(1), 62-69. https://doi.org/10.1089/zeb.2012.0761