Structural health monitoring of wind turbine blades: acoustic source localization using wireless sensor networks

Omar Mabrok Bouzid*, Gui Yun Tian, Kanapathippillai Cumanan, David Moore

*Corresponding author for this work

    Research output: Contribution to journalArticle

    82 Downloads (Pure)

    Abstract

    Structural health monitoring (SHM) is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE) technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1) the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2) localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.
    Original languageEnglish
    Article number139695
    JournalJournal of Sensors
    Volume2015
    DOIs
    Publication statusPublished - 27 Jul 2015

      Fingerprint

    Keywords

    • sound fields
    • sensors
    • wind turbines

    Cite this