TY - JOUR
T1 - Oral administration of Ginkgo biloba extract, EGb-761 inhibits thermal hyperalgesia in rodent models of inflammatory and post-surgical pain
AU - Biddlestone, Laura
AU - Corbett, Alistair D.
AU - Dolan, Sharron
N1 - <p>Originally published in: British Journal of Pharmacology (2007), 151 (2), pp.285-291.</p>
PY - 2007/5/1
Y1 - 2007/5/1
N2 - Studies in vitro suggest that the standardised extract of Ginkgo biloba, EGb-761 has anti-inflammatory properties and modulatory effects on key pain-related molecules. This study investigated the analgesic and anti-inflammatory effects of EGb-761 on carrageenan-induced inflammatory and hindpaw incisional pain. Experimental approach: Adult male Wistar rats (n=6-10/group; 250-420 g) were injected intradermally with carrageenan into the left hindpaw or anaesthetised with isoflurane (2%) and a longitudinal 1 cm incision was made through the skin, fascia and plantaris muscle of the hindpaw. EGb-761 (3, 10, 30, 100 or 300 mg kg-1), diclofenac (5 mg kg-1) or drug-vehicle was administered 3 h post-carrageenan/post-surgery. Hindpaw withdrawal latency (in seconds) to thermal stimulation, response threshold (in grams) to mechanical stimulation and paw volume were measured. Key results: Carrageenan induced significant mechanical allodynia, thermal hyperalgesia and paw oedema at 6 h post-carrageenan, while paw incision surgery induced significant mechanical allodynia and thermal hyperalgesia at 6 and 24 h post-surgery. Administration of EGb-761 dose-dependently inhibited thermal hyperalgesia and was equally effective as diclofenac (5 mg kg-1) in both the carrageenan and hindpaw incision model. EGb-761 had no effect on carrageenan- or incision-induced mechanical allodynia or paw oedema. Diclofenac significantly reduced mechanical allodynia in both models and carrageenan-induced paw oedema. Conclusions and Implications: EGb-761 dose-dependently alleviates acute inflammatory and surgically induced thermal hyperalgesia and is comparable to diclofenac, a commonly prescribed non-steroidal anti-inflammatory drug. This indicates that EGb-761 has analgesic potential in acute inflammatory pain.
AB - Studies in vitro suggest that the standardised extract of Ginkgo biloba, EGb-761 has anti-inflammatory properties and modulatory effects on key pain-related molecules. This study investigated the analgesic and anti-inflammatory effects of EGb-761 on carrageenan-induced inflammatory and hindpaw incisional pain. Experimental approach: Adult male Wistar rats (n=6-10/group; 250-420 g) were injected intradermally with carrageenan into the left hindpaw or anaesthetised with isoflurane (2%) and a longitudinal 1 cm incision was made through the skin, fascia and plantaris muscle of the hindpaw. EGb-761 (3, 10, 30, 100 or 300 mg kg-1), diclofenac (5 mg kg-1) or drug-vehicle was administered 3 h post-carrageenan/post-surgery. Hindpaw withdrawal latency (in seconds) to thermal stimulation, response threshold (in grams) to mechanical stimulation and paw volume were measured. Key results: Carrageenan induced significant mechanical allodynia, thermal hyperalgesia and paw oedema at 6 h post-carrageenan, while paw incision surgery induced significant mechanical allodynia and thermal hyperalgesia at 6 and 24 h post-surgery. Administration of EGb-761 dose-dependently inhibited thermal hyperalgesia and was equally effective as diclofenac (5 mg kg-1) in both the carrageenan and hindpaw incision model. EGb-761 had no effect on carrageenan- or incision-induced mechanical allodynia or paw oedema. Diclofenac significantly reduced mechanical allodynia in both models and carrageenan-induced paw oedema. Conclusions and Implications: EGb-761 dose-dependently alleviates acute inflammatory and surgically induced thermal hyperalgesia and is comparable to diclofenac, a commonly prescribed non-steroidal anti-inflammatory drug. This indicates that EGb-761 has analgesic potential in acute inflammatory pain.
KW - thermal hyperalgesia
KW - Ginkgo biloba
KW - inflammation
KW - mechanical allodynia
KW - post-surgical pain
KW - analgesia
U2 - 10.1038/sj.bjp.0707220
DO - 10.1038/sj.bjp.0707220
M3 - Article
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
ER -