Mixed-reactant, micro-tubular solid oxide fuel cells: an experimental study

N. Akhtar*, S. P. Decent, D. Loghin, K. Kendall

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)


Anode-supported, micro-tubular solid oxide fuel cells were prepared and operated, utilizing mixed-reactant (methane and air mixture) supply. The cells were composed of conventional materials, i.e. nickel, yttria-stabilized zirconia (Ni-YSZ) as anode supported material, yttria-stabilized zirconia (YSZ) as electrolyte, and lanthanum strontium manganite (LSM) as cathode material. The cells were operated at various temperatures in between 550 and 800 °C with varying methane/air ratio (1:1-1:4.76). Cell performance was found to be strongly dependent on flow rate and mixing ratio. At 750 °C, the maximum open circuit voltage (OCV) of the cell was 1.05 V at a methane/air ratio of 1:4.76, with a maximum power output of 122 mW cm-2. The degradation test shows 0.05% performance loss per 24 h, thereafter, fluctuations in current density were observed due to oxidation-reduction cycles over nickel surface. It is therefore concluded that although the methane/air ratio of 1:4.76 gives the best performance but the long-term performance is not guaranteed under such conditions.
Original languageEnglish
Pages (from-to)39-48
Number of pages10
JournalJournal of Power Sources
Issue number1
Early online date22 Jan 2009
Publication statusPublished - 1 Aug 2009
Externally publishedYes


  • Solid oxide fuel cell
  • Mixed-reactant
  • Air-fuel mixture
  • Single-chamber
  • Micro-tubular

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'Mixed-reactant, micro-tubular solid oxide fuel cells: an experimental study'. Together they form a unique fingerprint.

Cite this