Mathematically modelling the spread of hepatitis C in injecting drug users

S Corson, D Greenhalgh, S Hutchinson

Research output: Contribution to journalArticle

Abstract

Mathematical modelling can provide valuable insights into the biological and epidemiological properties of infectious diseases as well as the potential impact of intervention strategies employed by health organizations worldwide. In this paper, we develop a deterministic, compartmental mathematical model to approximate the spread of the hepatitis C virus (HCV) in an injecting drug user (IDU) population. Using analytical techniques, we find that the model behaviour is determined by the basic reproductive number R0, where R0 = 1 is a critical threshold separating two different outcomes. If R0 = 1 and HCV is initially present in the population, we find that the system will reach a disease-free equilibrium where HCV has been eliminated in all IDUs and needles.
Original languageEnglish
Pages (from-to)205-230
Number of pages26
JournalMathematical Medicine and Biology
Volume29
Issue number3
DOIs
Publication statusPublished - 2012

Keywords

  • hepatitis C
  • mathematical model
  • epidemiology
  • injecting drug use

Fingerprint Dive into the research topics of 'Mathematically modelling the spread of hepatitis C in injecting drug users'. Together they form a unique fingerprint.

  • Cite this