Abstract
The work presented in this paper uses a novel Machine Vision application to detect and identify micro-organism oocysts on drinking water. This new concept of water borne micro-organism detection uses image processing to allow detailed inspection of parasite morphology to nanometre dimensions. The detection results are more reliable than existing manual methods. Combining Normarski Differential Interface Contrast (DIC) and fluorescence microscopy using Fluorescein Isothiocyanate (FITC) and UV filters, the system provides a reliable detection of micro-organisms with a considerable reduction in time, cost and subjectivity over the current labour intensive time consuming manual method.
Original language | English |
---|---|
Title of host publication | Proceedings of the 12th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems |
Publisher | Springer-Verlag |
ISBN (Print) | 9783540855668 |
DOIs | |
Publication status | Published - 1 Jan 2008 |
Keywords
- microscopy
- environmental sciences
- drinking water
- microorganisms