TY - GEN
T1 - Integrating life cycle assessment of space systems into the concurrent design process
AU - Wilson, Andrew Ross
AU - Vasile, Massimiliano
N1 - Funding Information:
The authors would like to thank the Engineering & Physical Sciences Research Council and SPACE Canada for their sponsorship. This gratitude also extends to the European Space Agency's Clean Space Initiative for their cooperation and support of this work.
PY - 2017
Y1 - 2017
N2 - Recent commitments by national and international bodies towards environmental problems has allowed a range of mitigation measures and key sustainability issues to filter down and become embedded in a growing number of industrial and commercial sectors. Notwithstanding this, space operations have often been overlooked in key legislation or regulatory requirements, with the result that the environmental impact of such activities were often disregarded or ignored. Over the last few years things have begun to change as interest has intensified in the transparency and accountability needed from the space industry in order to fully understand and articulate its effects on the environment. This has led to the development of an environmental management tool called Life Cycle Assessment (LCA) which is increasingly being adopted by the space industry to assess the full environmental impact of their products and practices over their entire life cycle. The European Space Agency (ESA) began work on this topic in 2009 by employing an internal concurrent design study called ECOSAT to consider the life cycle impact of the design, manufacturing, launch and operations of a satellite. One of the key findings of this study revealed that existing terrestrial focussed LCA databases lacked the scope and capacity to conduct such advanced assessments due to the unique and specialist nature of space sector operations. To overcome this, ESA has continued to develop LCA methodology within the space sector to the point where it is now looking at introducing it into the design of future spacecraft and space systems. This indicates the manner in which the design and execution of European space missions will likely proceed. Running alongside this green movement, the New Space trend is predicted to introduce large numbers of small satellites into the space environment which will substantially alter environmental and societal impacts. This paper presents an open-source LCA platform currently under development at the University of Strathclyde, outlining its integration into the concurrent design process of next generation green space systems. The LCA platform includes extreme scale systems from large constellations of nanosats to solar power satellites. Both extremes have in common the need of massive production cycles. The integration of LCA into the design process allows one to minimise the environmental impact and define new optimality criteria for the space system.
AB - Recent commitments by national and international bodies towards environmental problems has allowed a range of mitigation measures and key sustainability issues to filter down and become embedded in a growing number of industrial and commercial sectors. Notwithstanding this, space operations have often been overlooked in key legislation or regulatory requirements, with the result that the environmental impact of such activities were often disregarded or ignored. Over the last few years things have begun to change as interest has intensified in the transparency and accountability needed from the space industry in order to fully understand and articulate its effects on the environment. This has led to the development of an environmental management tool called Life Cycle Assessment (LCA) which is increasingly being adopted by the space industry to assess the full environmental impact of their products and practices over their entire life cycle. The European Space Agency (ESA) began work on this topic in 2009 by employing an internal concurrent design study called ECOSAT to consider the life cycle impact of the design, manufacturing, launch and operations of a satellite. One of the key findings of this study revealed that existing terrestrial focussed LCA databases lacked the scope and capacity to conduct such advanced assessments due to the unique and specialist nature of space sector operations. To overcome this, ESA has continued to develop LCA methodology within the space sector to the point where it is now looking at introducing it into the design of future spacecraft and space systems. This indicates the manner in which the design and execution of European space missions will likely proceed. Running alongside this green movement, the New Space trend is predicted to introduce large numbers of small satellites into the space environment which will substantially alter environmental and societal impacts. This paper presents an open-source LCA platform currently under development at the University of Strathclyde, outlining its integration into the concurrent design process of next generation green space systems. The LCA platform includes extreme scale systems from large constellations of nanosats to solar power satellites. Both extremes have in common the need of massive production cycles. The integration of LCA into the design process allows one to minimise the environmental impact and define new optimality criteria for the space system.
KW - Concurrent engineering
KW - EcoDesign
KW - Life cycle assessment
KW - Space systems
M3 - Conference contribution
AN - SCOPUS:85051440499
SN - 9781510855373
T3 - Proceedings of the International Astronautical Congress, IAC
SP - 9548
EP - 9560
BT - 68th International Astronautical Congress, IAC 2017
PB - International Astronautical Federation
T2 - 68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security
Y2 - 25 September 2017 through 29 September 2017
ER -