Abstract
We studied visual evoked potentials (VEPs) elicited by second-order contrast modulations of binary dynamic noise and first-order luminance modulations. Using a 3-point Laplacian operator centred on Oz, we found that contrast modulations of both low and higher spatial frequencies elicited a negative component whose latency was about 200 ms. The latency of this component was significantly longer than that of the early Laplacian components to first-order luminance modulations. These findings could be due to slower first-stage linear filters and additional processing stages of the second-order pathway. The topographical analysis of scalp recorded VEPs to central and half-field stimulation has suggested that the responses to second-order patterns are likely to be generated by neuronal structures within the primary visual cortex which may have inputs from extrastriate neurons via feedback connections.
Original language | English |
---|---|
Journal | Vision Research |
DOIs | |
Publication status | Published - 1 Aug 2005 |
Keywords
- visual evoked potentials
- vision sciences
- visual cortex
- second-order vision