TY - GEN
T1 - Graph colouring MAC protocol for underwater sensor networks
AU - Alfouzan, Faisal Abdulaziz F
AU - Shahrabi, Alireza
AU - Ghoreyshi, Seyed Mohammad
AU - Boutaleb, Tuleen
N1 - Acceptance in SAN
PY - 2018/8/13
Y1 - 2018/8/13
N2 - Employing contention-based MAC protocols in underwater sensor networks are typically costly. This is mainly due to the unique characteristics of its acoustic channels such as long propagation delay, high bit error rate, and limited bandwidth. As a consequence, handshake-based and random access-based MAC protocols do not perform as well as expected. The collision-free approach is therefore considered to achieve a better performance by efficiently addressing spatial-temporal uncertainty, hidden/exposed terminal problems, and near-far effect at MAC layer, thus collisions and retransmissions are properly avoided in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a novel energy-conserving and collision-free graph colouring MAC protocol, called GC-MAC, for UWSNs. It employs a TDMA-like principle by assigning separate time slots to every individual colour in the network. Nodes with the same colours can thus transmit concurrently without any collision. GC-MAC also does not require CDMA or power adjustment for collision resolution. Our extensive simulation study reveals that our proposed protocol can efficiently handle the traffic contention to achieve significant improvement in terms of throughput, energy consumption, and fairness index under varying offered loads.
AB - Employing contention-based MAC protocols in underwater sensor networks are typically costly. This is mainly due to the unique characteristics of its acoustic channels such as long propagation delay, high bit error rate, and limited bandwidth. As a consequence, handshake-based and random access-based MAC protocols do not perform as well as expected. The collision-free approach is therefore considered to achieve a better performance by efficiently addressing spatial-temporal uncertainty, hidden/exposed terminal problems, and near-far effect at MAC layer, thus collisions and retransmissions are properly avoided in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a novel energy-conserving and collision-free graph colouring MAC protocol, called GC-MAC, for UWSNs. It employs a TDMA-like principle by assigning separate time slots to every individual colour in the network. Nodes with the same colours can thus transmit concurrently without any collision. GC-MAC also does not require CDMA or power adjustment for collision resolution. Our extensive simulation study reveals that our proposed protocol can efficiently handle the traffic contention to achieve significant improvement in terms of throughput, energy consumption, and fairness index under varying offered loads.
KW - distributed clustering approach
KW - graph colouring
KW - media access control (MAC)
KW - underwater sensor networks (UWSNs)
U2 - 10.1109/AINA.2018.00030
DO - 10.1109/AINA.2018.00030
M3 - Conference contribution
SP - 120
EP - 127
BT - IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)
PB - IEEE
ER -