Abstract
Training multi-layer perceptron (MLP) is non-trivial due to its non-linear nature and the presence of large number of local optima. Meta-heuristic algorithms may solve this problem efficiently. In this paper, we investigate the use of glowworm swarm optimisation (GSO) algorithm in training the MLP neural network. The GSO based trainer is evaluated on five classification datasets, namely Wisconsin breast cancer, BUPA liver disorders, vertebral column, exclusive OR (XOR) and balloons. The evaluations are conducted by comparing the proposed trainer with four other meta-heuristics, namely biogeography-based optimisation (BBO), genetic algorithm (GA), bat (BAT) and multi-verse optimiser (MVO) algorithms. The results show that our proposed trainer achieves better classification accuracy rate in most datasets compared to the other algorithms.
Original language | English |
---|---|
Title of host publication | Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT '17) |
Publisher | IEEE |
Pages | 131-138 |
Number of pages | 8 |
ISBN (Print) | 9781450355490 |
DOIs | |
Publication status | Published - 5 Dec 2017 |
Event | The 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies - Austin, United States Duration: 5 Dec 2017 → 8 Dec 2017 http://dsr.encs.vancouver.wsu.edu/BDCAT2017/ |
Publication series
Name | BDCAT 2017 - Proceedings of the 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies |
---|
Conference
Conference | The 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies |
---|---|
Abbreviated title | BDCAT 2017 |
Country/Territory | United States |
City | Austin |
Period | 5/12/17 → 8/12/17 |
Internet address |
Keywords
- glowworm swarm optimisation (GSO)
- multi-layer perceptrons
- neural network
ASJC Scopus subject areas
- Information Systems
- Computer Networks and Communications
- Computer Science Applications