Abstract
This paper presents findings of a case study conducted to introduce industrial robots into automatic train coupler inspection of Siemens Class 380 rolling-stock. The targets are localized by coalescing RGB and time of flight (ToF) sensor data. The study examines several supervised machine learning techniques to improve the overall accuracy of 3D point clouds. A cost factor which reflects root mean square, mean absolute error and coefficient of determination is defined to evaluate the performance of the learning algorithms. The best-suited models are further validated using simulation data and selected to include in overall robotic sensing system.
Original language | English |
---|---|
Title of host publication | 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) |
Editors | Madhi H. Miraz, Peter S. Excell, Andrew Jones, Safeeullah Soomro, Maaruf Ali |
Publisher | IEEE |
Pages | 242-246 |
Number of pages | 5 |
ISBN (Electronic) | 9781538649046 |
ISBN (Print) | 9781538649053 |
DOIs | |
Publication status | Published - 7 Mar 2019 |
Keywords
- sensor fusion, railway maintenance, robotic vision, supervised machine learning