Efficacy of various time/temperature conditions in combination with homogenisation on the inactivation of Mycobacterium avium subsp. paratuberculosis in milk

Irene R. Grant, Alan G. Williams, Michael T. Rowe, D. Donald Muir

Research output: Contribution to journalArticle

Abstract

The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 101 to 105 M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P <0.001 for those in hold and P <0.05 for those upstream). Where colony counts were obtained, the number of surviving M. avium subsp. paratuberculosis cells was estimated to be 10 to 20 CFU/150 ml, and the reduction in numbers achieved by HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or "miniclump" status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization.

Original languageEnglish
JournalApplied and Environmental Microbiology
Publication statusPublished - 1 Jun 2005

Keywords

  • Mycobacterium
  • milk pasteurisation

Fingerprint Dive into the research topics of 'Efficacy of various time/temperature conditions in combination with homogenisation on the inactivation of Mycobacterium avium subsp. paratuberculosis in milk'. Together they form a unique fingerprint.

Cite this