Abstract
Multidrug resistance (MDR) refers to the ability of cancer cells to develop cross resistance to a range of anticancer drugs which are structurally and functionally unrelated. P-glycoprotein (P-gp) is the best studied MDR phenotype in photodynamic therapy (PDT) treated cells. Our pervious study demonstrated that FosPeg® mediated PDT is effective to NPC cell line models. In this in vitro study, the expression of MDR1 gene and its product P-gp in undifferentiated, poorly differentiated and well differentiated human nasopharyngeal carcinoma (NPC) cells were investigated. The influence of P-gp efflux activities on photosensitizer FosPeg® was also examined. Regardless of the differentiation status, PDT tested NPC cell lines all expressed P-gp protein. Results indicated that FosPeg® photoactivation could heighten the expression of MDR1 gene and P-gp transporter protein in a dose dependent manner. Up to 2-fold increase of P-gp protein expression were seen in NPC cells after FosPeg® mediated PDT. Interestingly, our finding demonstrated that FosPeg® mediated PDT efficiency is independent to the MDR1 gene and P-gp protein expression in NPC cells. FosPeg® itself is not the substrate of P-gp transporter protein and no efflux of FosPeg® were observed in NPC cells. Therefore, the PDT efficiency would not be affected even though FosPeg® mediated PDT could induce MDR1 gene and P-gp protein expression in NPC cells. FosPeg® mediated PDT could be a potential therapeutic approach for MDR cancer patients.
Original language | English |
---|---|
Pages (from-to) | 82-87 |
Number of pages | 6 |
Journal | Journal of Photochemistry and Photobiology B: Biology |
Volume | 148 |
Early online date | 31 Mar 2015 |
DOIs | |
Publication status | Published - 1 Jul 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Radiation
- Radiological and Ultrasound Technology
- Biophysics
- Radiology Nuclear Medicine and imaging