TY - JOUR
T1 - Design and implementation of cloud enabled random neural network-based decentralized smart controller with intelligent sensor nodes for HVAC
AU - Javed, Abbas
AU - Larijani, Hadi
AU - Ahmadinia, Ali
AU - Emmanuel, Rohinton
AU - Mannion, Mike
AU - Gibson, Des
N1 - AAM: uploaded 10-1-16
Acceptance date on file ET
Funding note: This work was supported in part by
Innovate U.K. and in part by CENSIS U.K.
PY - 2017/4
Y1 - 2017/4
N2 - Building energy management systems (BEMSs) monitor and control the heating ventilation and air conditioning (HVAC) of buildings in addition to many other building systems and utilities. Wireless sensor networks (WSNs) have become the integral part of BEMS at the initial implementation phase or latter when retro fitting is required to upgrade older buildings. WSN enabled BEMS, however, have several challenges which are managing data, controllers, actuators, intelligence, and power usage of wireless components (which might be battery powered). The wireless sensor nodes have limited processing power and memory for embedding intelligence in the sensor nodes. In this paper, we present a random neural network (RNN)-based smart controller on a Internet of Things (IoT) platform integrated with cloud processing for training the RNN which has been implemented and tested in an environment chamber. The IoT platform is modular and not limited to but has several sensors for measuring temperature, humidity, inlet air coming from the HVAC duct and PIR. The smart RNN controller has three main components: 1) base station; 2) sensor nodes; and 3) the cloud with embedded intelligence on each component for different tasks. This IoT platform is integrated with cloud processing for training the RNN. The RNN-based occupancy estimator is embedded in sensor node which estimates the number of occupants inside the room and sends this information to the base station. The base station is embedded with RNN models to control the HVAC on the basis of setpoints for heating and cooling. The HVAC of the environment chamber consumes 27.12% less energy with smart controller as compared to simple rule-based controllers. The occupancy estimation time is reduced by our proposed hybrid algorithm for occupancy estimation that combines RNN-based occupancy estimator with door sensor node (equipped with PIR and magnetic reed switch). The results show that accuracy of hybrid RNN occupancy estimator is 88%.
AB - Building energy management systems (BEMSs) monitor and control the heating ventilation and air conditioning (HVAC) of buildings in addition to many other building systems and utilities. Wireless sensor networks (WSNs) have become the integral part of BEMS at the initial implementation phase or latter when retro fitting is required to upgrade older buildings. WSN enabled BEMS, however, have several challenges which are managing data, controllers, actuators, intelligence, and power usage of wireless components (which might be battery powered). The wireless sensor nodes have limited processing power and memory for embedding intelligence in the sensor nodes. In this paper, we present a random neural network (RNN)-based smart controller on a Internet of Things (IoT) platform integrated with cloud processing for training the RNN which has been implemented and tested in an environment chamber. The IoT platform is modular and not limited to but has several sensors for measuring temperature, humidity, inlet air coming from the HVAC duct and PIR. The smart RNN controller has three main components: 1) base station; 2) sensor nodes; and 3) the cloud with embedded intelligence on each component for different tasks. This IoT platform is integrated with cloud processing for training the RNN. The RNN-based occupancy estimator is embedded in sensor node which estimates the number of occupants inside the room and sends this information to the base station. The base station is embedded with RNN models to control the HVAC on the basis of setpoints for heating and cooling. The HVAC of the environment chamber consumes 27.12% less energy with smart controller as compared to simple rule-based controllers. The occupancy estimation time is reduced by our proposed hybrid algorithm for occupancy estimation that combines RNN-based occupancy estimator with door sensor node (equipped with PIR and magnetic reed switch). The results show that accuracy of hybrid RNN occupancy estimator is 88%.
KW - random neural network
KW - Wireless Sensor Networks
KW - cloud computing
U2 - 10.1109/JIOT.2016.2627403
DO - 10.1109/JIOT.2016.2627403
M3 - Article
SN - 2327-4662
VL - 4
SP - 393
EP - 403
JO - IEEE Internet of Things Journal
JF - IEEE Internet of Things Journal
IS - 2
ER -