CSTNet: a dual-branch convolutional network for imaging of reactive flows using chemical species tomography

Yunfan Jiang, Jingjing Si, Rui Zhang, Godwin Enemali, Bin Zhou, Hugh McCann, Chang Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
67 Downloads (Pure)


Chemical species tomography (CST) has been widely used for in situ imaging of critical parameters, e.g., species concentration and temperature, in reactive flows. However, even with state-of-the-art computational algorithms, the method is limited due to the inherently ill-posed and rank-deficient tomographic data inversion and by high computational cost. These issues hinder its application for real-time flow diagnosis. To address them, we present here a novel convolutional neural network, namely CSTNet, for high-fidelity, rapid, and simultaneous imaging of species concentration and temperature using CST. CSTNet introduces a shared feature extractor that incorporates the CST measurements and sensor layout into the learning network. In addition, a dual-branch decoder with internal crosstalk, which automatically learns the naturally correlated distributions of species concentration and temperature, is proposed for image reconstructions. The proposed CSTNet is validated both with simulated datasets and with measured data from real flames in experiments using an industry-oriented sensor. Superior performance is found relative to previous approaches in terms of reconstruction accuracy and robustness to measurement noise. This is the first time, to the best of our knowledge, that a deep learning-based method for CST has been experimentally validated for simultaneous imaging of multiple critical parameters in reactive flows using a low-complexity optical sensor with a severely limited number of laser beams.
Original languageEnglish
Pages (from-to)9248-9258
Number of pages11
JournalIEEE Transactions on Neural Networks and Learning Systems
Issue number11
Publication statusPublished - 24 Mar 2022


  • chemical species tomography
  • CNN
  • deep learning
  • inverse problem
  • convolutional neural network (CNN)
  • Chemical species tomography (CST)

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications


Dive into the research topics of 'CSTNet: a dual-branch convolutional network for imaging of reactive flows using chemical species tomography'. Together they form a unique fingerprint.

Cite this